{"title":"Comparative Formation of Nitrogenous By-products in Hydroxylamine-Enhanced Fe(II)/PDS and Fe(II)/H2O2 Systems During Contaminant Degradation","authors":"Jiebin Duan, Ying Cao, Xiaonan Luo, Jin Jiang","doi":"10.1016/j.watres.2025.124146","DOIUrl":null,"url":null,"abstract":"This study systematically investigated the degradation of phenolic (phenol) and aromatic carboxylic (benzoic acid (BA)) compounds and formation of nitrogenous by-products in Fe(II)-activated peroxide systems with hydroxylamine (HA). Significant differences were observed between the peroxydisulfate (PDS)-based and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>)-based systems. The Fe(II)/PDS/HA system produced substantial yields of nitrosated and nitrated by-products, reaching 10-35% for phenol and 2-17% for BA. In contrast, the Fe(II)/H<sub>2</sub>O<sub>2</sub>/HA system showed minimal nitrosated and nitrated by-product formation, remaining below 1%. Reactive species characterization identified Fe(IV), sulfate radical (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mo is=\"true\">&#x2212;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 2339.4 1295.7\" width=\"5.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-53\"></use><use x=\"556\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1335,432)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(1335,-286)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">−</mo></mrow></msubsup></math></script></span>), hydroxyl radical (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mtext is=\"true\">OH</mtext></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 2029.5 898.2\" width=\"4.714ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">OH</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">OH</mtext></mrow></math></script></span>) and various reactive nitrogen species (RNS) including nitric oxide radical (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mtext is=\"true\">NO</mtext></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 2029.5 898.2\" width=\"4.714ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-4E\"></use><use x=\"750\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">NO</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">NO</mtext></mrow></math></script></span>), nitrogen dioxide radical (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mi mathvariant=\"normal\" is=\"true\">N</mi></mrow><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mn is=\"true\">2</mn></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2483.4 1047.3\" width=\"5.768ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-4E\"></use></g></g><g is=\"true\" transform=\"translate(1251,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">•</mo><mi is=\"true\" mathvariant=\"normal\">N</mi></mrow><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">2</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mrow is=\"true\"><mo is=\"true\">•</mo><mi mathvariant=\"normal\" is=\"true\">N</mi></mrow><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mn is=\"true\">2</mn></msub></mrow></math></script></span>), and peroxynitrous acid (ONOOH) in the PDS system, while only <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mtext is=\"true\">OH</mtext></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 2029.5 898.2\" width=\"4.714ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">OH</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">OH</mtext></mrow></math></script></span> and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mtext is=\"true\">NO</mtext></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 2029.5 898.2\" width=\"4.714ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-4E\"></use><use x=\"750\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">NO</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">NO</mtext></mrow></math></script></span> were detected in the H<sub>2</sub>O<sub>2</sub> system. The divergent nitrogenous by-product formation originated from distinct reaction mechanisms. In the PDS system, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mo is=\"true\">&#x2212;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.009ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -945.9 2339.4 1295.7\" width=\"5.433ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-53\"></use><use x=\"556\" xlink:href=\"#MJMAIN-4F\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1335,432)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g></g><g is=\"true\" transform=\"translate(1335,-286)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">−</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mtext is=\"true\">SO</mtext><mrow is=\"true\"><mn is=\"true\">4</mn></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">−</mo></mrow></msubsup></math></script></span> oxidized substrates to phenoxyl radicals that rapidly combined with RNS. In contrast, <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mtext is=\"true\">OH</mtext></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.086ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -796.9 2029.5 898.2\" width=\"4.714ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(500,0)\"><use xlink:href=\"#MJMAIN-4F\"></use><use x=\"778\" xlink:href=\"#MJMAIN-48\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">OH</mtext></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mo is=\"true\">•</mo><mtext is=\"true\">OH</mtext></mrow></math></script></span> addition in the H<sub>2</sub>O<sub>2</sub> system predominantly yielded hydroxylated intermediates with low reactivity toward RNS. Operational parameters including Fe(II) concentration, HA dosage, and pH significantly influenced both contaminant degradation and nitrogenous by-product formation. Notably, Cl<sup>−</sup> promoted the formation of nitro(so) by-products in both PDS and H<sub>2</sub>O<sub>2</sub> systems through formation of nitrosyl and nitryl chlorides. This work presents the first direct evidence of HA-derived nitrogen incorporation into organic by-products via RNS-mediated transformation pathways in Fenton and Fenton-like systems. These findings highlight critical environmental implications for the application of HA-enhanced advanced oxidation processes (AOPs) in water and wastewater treatment, particularly concerning the potential formation of toxic nitrogenous transformation products.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"68 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.124146","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study systematically investigated the degradation of phenolic (phenol) and aromatic carboxylic (benzoic acid (BA)) compounds and formation of nitrogenous by-products in Fe(II)-activated peroxide systems with hydroxylamine (HA). Significant differences were observed between the peroxydisulfate (PDS)-based and hydrogen peroxide (H2O2)-based systems. The Fe(II)/PDS/HA system produced substantial yields of nitrosated and nitrated by-products, reaching 10-35% for phenol and 2-17% for BA. In contrast, the Fe(II)/H2O2/HA system showed minimal nitrosated and nitrated by-product formation, remaining below 1%. Reactive species characterization identified Fe(IV), sulfate radical (), hydroxyl radical () and various reactive nitrogen species (RNS) including nitric oxide radical (), nitrogen dioxide radical (), and peroxynitrous acid (ONOOH) in the PDS system, while only and were detected in the H2O2 system. The divergent nitrogenous by-product formation originated from distinct reaction mechanisms. In the PDS system, oxidized substrates to phenoxyl radicals that rapidly combined with RNS. In contrast, addition in the H2O2 system predominantly yielded hydroxylated intermediates with low reactivity toward RNS. Operational parameters including Fe(II) concentration, HA dosage, and pH significantly influenced both contaminant degradation and nitrogenous by-product formation. Notably, Cl− promoted the formation of nitro(so) by-products in both PDS and H2O2 systems through formation of nitrosyl and nitryl chlorides. This work presents the first direct evidence of HA-derived nitrogen incorporation into organic by-products via RNS-mediated transformation pathways in Fenton and Fenton-like systems. These findings highlight critical environmental implications for the application of HA-enhanced advanced oxidation processes (AOPs) in water and wastewater treatment, particularly concerning the potential formation of toxic nitrogenous transformation products.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.