Unveiling interfacial dead layer in wurtzite ferroelectrics

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jinlin Wang, Yun-Qin Li, Rui Wang, Qi Liu, Haotian Ye, Ping Wang, Xifan Xu, Huaiyuan Yang, Fang Liu, Bowen Sheng, Liuyun Yang, Xiaoyang Yin, Yi Tong, Tao Wang, Wen-Yi Tong, Xin-Zheng Li, Chun-Gang Duan, Bo Shen, Xinqiang Wang
{"title":"Unveiling interfacial dead layer in wurtzite ferroelectrics","authors":"Jinlin Wang, Yun-Qin Li, Rui Wang, Qi Liu, Haotian Ye, Ping Wang, Xifan Xu, Huaiyuan Yang, Fang Liu, Bowen Sheng, Liuyun Yang, Xiaoyang Yin, Yi Tong, Tao Wang, Wen-Yi Tong, Xin-Zheng Li, Chun-Gang Duan, Bo Shen, Xinqiang Wang","doi":"10.1038/s41467-025-61291-2","DOIUrl":null,"url":null,"abstract":"<p>Wurtzite ferroelectrics hold immense promise to revolutionize modern micro- and nano-electronics due to their compatibility with semiconductor technologies. However, the presence of interfacial dead layers with irreversible polarization limits their development and applications, and the formation mechanisms of dead layers remain unclear. Here, we demonstrate that dead layer formation in ScAlN, a representative wurtzite ferroelectric, originates from a high density of nitrogen vacancies in combination with interfacial strain. Atomic-scale investigations using scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS), supported by first-principles calculations, reveal that compressive strain near the ScAlN/GaN interface reduces the formation energy of nitrogen vacancies, promoting their generation. These vacancies degrade dielectric properties and raise the ferroelectric switching barrier, the latter further exacerbated by compressive strain. These combined effects suppress polarization reversibility near the interface. This work elucidates the microscopic origin of interfacial dead layers and highlights the significance of defect and strain engineering in wurtzite ferroelectrics, which are essential to advancing their integration and scalability in next-generation electronic devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"154 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61291-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Wurtzite ferroelectrics hold immense promise to revolutionize modern micro- and nano-electronics due to their compatibility with semiconductor technologies. However, the presence of interfacial dead layers with irreversible polarization limits their development and applications, and the formation mechanisms of dead layers remain unclear. Here, we demonstrate that dead layer formation in ScAlN, a representative wurtzite ferroelectric, originates from a high density of nitrogen vacancies in combination with interfacial strain. Atomic-scale investigations using scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS), supported by first-principles calculations, reveal that compressive strain near the ScAlN/GaN interface reduces the formation energy of nitrogen vacancies, promoting their generation. These vacancies degrade dielectric properties and raise the ferroelectric switching barrier, the latter further exacerbated by compressive strain. These combined effects suppress polarization reversibility near the interface. This work elucidates the microscopic origin of interfacial dead layers and highlights the significance of defect and strain engineering in wurtzite ferroelectrics, which are essential to advancing their integration and scalability in next-generation electronic devices.

Abstract Image

揭示纤锌矿铁电体的界面死层
由于纤锌矿铁电体与半导体技术的兼容性,它有望彻底改变现代微电子和纳米电子学。然而,具有不可逆极化的界面死层的存在限制了其发展和应用,且死层的形成机制尚不清楚。在此,我们证明了典型纤锌矿铁电晶体ScAlN中死层的形成是由高密度的氮空位和界面应变共同作用的结果。利用扫描透射电子显微镜(STEM)和电子能量损失谱(EELS)的原子尺度研究,在第一性原理计算的支持下,揭示了ScAlN/GaN界面附近的压缩应变降低了氮空位的形成能,促进了它们的产生。这些空位降低了介电性能,提高了铁电开关势垒,压应变进一步加剧了后者。这些综合效应抑制了界面附近的极化可逆性。这项工作阐明了界面死层的微观起源,并强调了纤锌矿铁电体中缺陷和应变工程的重要性,这对于提高其在下一代电子器件中的集成和可扩展性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信