Fanfan Fan, Jun Wang, Kun Liu, Shiyue Zhang, Jian Gao, Xiongfei Li, Jiaqiang Ma, Yue Zhao, Teng Li, Han Su, Xinfeng Yang, Han Han, Qingyuan Huang, Yiliang Zhang, Yunjian Pan, Ting Ye, Hong Hu, Yihua Sun, Fei Li, Zhiwei Cao, Yang Zhang, Xiaoming Zhang, Haiquan Chen
{"title":"Mast cells boost anti-tumor potency of MAIT cells via inflammasome-dependent secretion of IL-18","authors":"Fanfan Fan, Jun Wang, Kun Liu, Shiyue Zhang, Jian Gao, Xiongfei Li, Jiaqiang Ma, Yue Zhao, Teng Li, Han Su, Xinfeng Yang, Han Han, Qingyuan Huang, Yiliang Zhang, Yunjian Pan, Ting Ye, Hong Hu, Yihua Sun, Fei Li, Zhiwei Cao, Yang Zhang, Xiaoming Zhang, Haiquan Chen","doi":"10.1038/s41467-025-61324-w","DOIUrl":null,"url":null,"abstract":"<p>Mast cells (MC) serve as pivotal sentinels in the regulation of immune responses and inflammation, yet their function in lung adenocarcinoma (LUAD) remains largely neglected. To decode their heterogeneity, we perform single-cell transcriptomic analysis of LUAD-infiltrating MCs. Our study uncovers the complexity in MC composition and identifies 9 distinct states, including proinflammation, chemotaxis, and antigen presentation. The proinflammatory MC subset, characterized by high IL-18 expression, is associated with improved outcomes for LUAD patients. This pro-inflammatory property is regulated by the activation of NLRP3 inflammasome within MCs, resulting in the formation of GSDMD pores and successive pyroptosis. Moreover, these MCs enhance the innate-like anti-tumor activity of MAIT cells by upregulating NKG2D and IFN-γ through the cytokine-activation mechanism. Our results uncover an unappreciated state of MCs and describe an inflammasome-dependent, MC-mediated regulation of MAIT cells in LUAD. These findings diversify our understanding of the functional repertoire and mechanistic equipment of MCs and MAIT cells, and suggest a potential therapeutic target for cancer treatment.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61324-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mast cells (MC) serve as pivotal sentinels in the regulation of immune responses and inflammation, yet their function in lung adenocarcinoma (LUAD) remains largely neglected. To decode their heterogeneity, we perform single-cell transcriptomic analysis of LUAD-infiltrating MCs. Our study uncovers the complexity in MC composition and identifies 9 distinct states, including proinflammation, chemotaxis, and antigen presentation. The proinflammatory MC subset, characterized by high IL-18 expression, is associated with improved outcomes for LUAD patients. This pro-inflammatory property is regulated by the activation of NLRP3 inflammasome within MCs, resulting in the formation of GSDMD pores and successive pyroptosis. Moreover, these MCs enhance the innate-like anti-tumor activity of MAIT cells by upregulating NKG2D and IFN-γ through the cytokine-activation mechanism. Our results uncover an unappreciated state of MCs and describe an inflammasome-dependent, MC-mediated regulation of MAIT cells in LUAD. These findings diversify our understanding of the functional repertoire and mechanistic equipment of MCs and MAIT cells, and suggest a potential therapeutic target for cancer treatment.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.