{"title":"Narrow-spectrum resource-utilizing bacteria drive the stability of synthetic communities through enhancing metabolic interactions","authors":"Wei Wang, Yanwei Xia, Panpan Zhang, Mengqing Zhu, Shiyi Huang, Xinli Sun, Zhihui Xu, Nan Zhang, Weibing Xun, Qirong Shen, Youzhi Miao, Ruifu Zhang","doi":"10.1038/s41467-025-61432-7","DOIUrl":null,"url":null,"abstract":"<p>The importance of synthetic microbial communities in agriculture is increasingly recognized, yet methods for constructing targeted communities using existing microbial resources remain limited. Here, six plant-beneficial bacterial strains with distinct functions and rhizosphere resource utilization profiles are selected to construct stable, multifunctional communities for plant growth promotion. Metabolic modeling reveals that narrower resource utilization correlates with increased metabolic interaction potential and reduced metabolic resource overlap, contributing to greater community stability. Integrated analyses further consistently confirm the central roles of narrow-spectrum resource-utilizing strains, <i>Cellulosimicrobium cellulans</i> E and <i>Pseudomonas stutzeri</i> G, which form metabolic interaction networks via secretion of asparagine, vitamin B12, isoleucine, and their precursors or derivatives. Two synthetic communities, SynCom4 and SynCom5, have high stability in the tomato rhizosphere and increase plant dry weight by over 80%. Our study elucidates the relationship between resource utilization width and community stability, providing a rational strategy for designing stable, multifunctional microbial communities for specific habitats.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-61432-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The importance of synthetic microbial communities in agriculture is increasingly recognized, yet methods for constructing targeted communities using existing microbial resources remain limited. Here, six plant-beneficial bacterial strains with distinct functions and rhizosphere resource utilization profiles are selected to construct stable, multifunctional communities for plant growth promotion. Metabolic modeling reveals that narrower resource utilization correlates with increased metabolic interaction potential and reduced metabolic resource overlap, contributing to greater community stability. Integrated analyses further consistently confirm the central roles of narrow-spectrum resource-utilizing strains, Cellulosimicrobium cellulans E and Pseudomonas stutzeri G, which form metabolic interaction networks via secretion of asparagine, vitamin B12, isoleucine, and their precursors or derivatives. Two synthetic communities, SynCom4 and SynCom5, have high stability in the tomato rhizosphere and increase plant dry weight by over 80%. Our study elucidates the relationship between resource utilization width and community stability, providing a rational strategy for designing stable, multifunctional microbial communities for specific habitats.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.