Design and modification strategies of covalent organic frameworks for photocatalytic hydrogen/hydrogen peroxide production

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuhao Yan, Lei Hao, Zhiqiang Ren, Rongchen Shen, Guijie Liang, Peng Zhang, Yuan Teng, Difa Xu, Xin Li
{"title":"Design and modification strategies of covalent organic frameworks for photocatalytic hydrogen/hydrogen peroxide production","authors":"Yuhao Yan, Lei Hao, Zhiqiang Ren, Rongchen Shen, Guijie Liang, Peng Zhang, Yuan Teng, Difa Xu, Xin Li","doi":"10.1016/j.jmst.2025.06.015","DOIUrl":null,"url":null,"abstract":"Amidst escalating environmental degradation and energy crises, the pursuit of renewable energy alternatives to fossil fuels has become a global imperative. Covalent organic frameworks (COFs), as emerging crystalline porous materials, demonstrate exceptional capabilities in solar-to-chemical energy conversion through the generation of clean fuels like molecular hydrogen (H<sub>2</sub>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). The development of efficient semiconductor photocatalysts is pivotal for advancing next-generation energy technologies. This study presents a systematic analysis of the four critical rate-determining steps in COFs photocatalysis: (1) photon absorption, (2) exciton dissociation, (3) charge carrier diffusion and complexation, and (4) surface redox reactions. The kinetic constraints and thermodynamic barriers associated with H<sub>2</sub>/H<sub>2</sub>O<sub>2</sub> production by COFs-based photocatalytic systems are critically evaluated, with particular emphasis on advanced regulation strategies: (i) enhancing light-harvesting through conjugated structure optimization and external sensitization, (ii) promoting exciton dissociation via Förster resonance energy transfer and localized electronic structure modulation, (iii) strengthening charge separation via crystallinity engineering and polarized field enhancement, and (iv) increasing surface active sites through microenvironment tailoring and cocatalyst integration while reducing reaction energy barriers via pH optimization. Finally, current challenges and future design paradigms for constructing COFs with enhanced photocatalytic performance are critically analyzed, with special consideration of stability-activity trade-offs and scalable synthesis protocols.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"170 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.06.015","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amidst escalating environmental degradation and energy crises, the pursuit of renewable energy alternatives to fossil fuels has become a global imperative. Covalent organic frameworks (COFs), as emerging crystalline porous materials, demonstrate exceptional capabilities in solar-to-chemical energy conversion through the generation of clean fuels like molecular hydrogen (H2) and hydrogen peroxide (H2O2). The development of efficient semiconductor photocatalysts is pivotal for advancing next-generation energy technologies. This study presents a systematic analysis of the four critical rate-determining steps in COFs photocatalysis: (1) photon absorption, (2) exciton dissociation, (3) charge carrier diffusion and complexation, and (4) surface redox reactions. The kinetic constraints and thermodynamic barriers associated with H2/H2O2 production by COFs-based photocatalytic systems are critically evaluated, with particular emphasis on advanced regulation strategies: (i) enhancing light-harvesting through conjugated structure optimization and external sensitization, (ii) promoting exciton dissociation via Förster resonance energy transfer and localized electronic structure modulation, (iii) strengthening charge separation via crystallinity engineering and polarized field enhancement, and (iv) increasing surface active sites through microenvironment tailoring and cocatalyst integration while reducing reaction energy barriers via pH optimization. Finally, current challenges and future design paradigms for constructing COFs with enhanced photocatalytic performance are critically analyzed, with special consideration of stability-activity trade-offs and scalable synthesis protocols.

Abstract Image

光催化制氢/过氧化氢共价有机框架的设计与修饰策略
随着环境恶化和能源危机的加剧,寻求可再生能源替代化石燃料已成为全球的当务之急。共价有机框架(COFs)作为一种新兴的晶体多孔材料,通过生成分子氢(H2)和过氧化氢(H2O2)等清洁燃料,在太阳能到化学能源转换方面表现出了卓越的能力。高效半导体光催化剂的开发是推进下一代能源技术的关键。本研究系统分析了COFs光催化的四个关键速率决定步骤:(1)光子吸收,(2)激子解离,(3)载流子扩散和络合,以及(4)表面氧化还原反应。本文对基于cofs的光催化系统产生H2/H2O2的动力学约束和热力学障碍进行了批判性评估,并特别强调了先进的调节策略:(i)通过共轭结构优化和外部敏化增强光捕获,(ii)通过Förster共振能量转移和局域电子结构调制促进激子解离,(iii)通过结晶度工程和极化场增强加强电荷分离,(iv)通过微环境定制和助催化剂整合增加表面活性位点,同时通过pH优化降低反应能垒。最后,对构建具有增强光催化性能的COFs的当前挑战和未来设计范例进行了批判性分析,特别考虑了稳定性-活性权衡和可扩展的合成协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信