Jingrun Hu , Yi Liu , Xuman Zhang , Zhuoyu Chen , Moran Tang , Yitao Lyu , Xiuqi You , Damian E. Helbling , Weiling Sun
{"title":"Integrated wide-scope and class-specific nontarget analysis reveals a broad spectrum of organic micropollutants in an urban river","authors":"Jingrun Hu , Yi Liu , Xuman Zhang , Zhuoyu Chen , Moran Tang , Yitao Lyu , Xiuqi You , Damian E. Helbling , Weiling Sun","doi":"10.1016/j.watres.2025.124145","DOIUrl":null,"url":null,"abstract":"<div><div>Environmental monitoring using nontarget analysis (NTA) has become a powerful tool for identifying complex mixtures of organic micropollutants in aquatic systems. Herein, we developed an integrated screening strategy that combines wide-scope NTA with class-specific NTA to comprehensively characterize micropollutant occurrence in the Chaobai River, Beijing, with a watershed that features a variety of human impacts and land cover patterns. In addition to the 293 micropollutants identified through target analysis and wide-scope NTA, class-specific NTA revealed 161 additional nontarget chemicals, including 28 per- and polyfluoroalkyl substances, 50 organophosphate esters, and 83 antibiotics and their transformation products, significantly expanding the chemical space identified by traditional wide-scope NTA. Concentrations of the 454 micropollutants spanned over five orders of magnitudes, with 27 exceeding 100 ng/L (median concentration) and 23 detected in over 90 % of samples. Spatiotemporal analysis revealed four distinct micropollutant distribution patterns, with two sample groups exhibiting significantly different profiles. The lower river, influenced by reclaimed water, showed higher concentrations and more frequent detections of wastewater-derived micropollutants, whereas the upper river and reservoirs were dominated by agriculture-related micropollutants. Key micropollutants and water quality parameters were identified as robust indicators for tracking occurrence patterns. This integrated screening strategy enables the detection of a broader spectrum of chemicals and provides deeper insights into their distribution, offering a transformative and expandable framework for future environmental monitoring and risk assessment.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"285 ","pages":"Article 124145"},"PeriodicalIF":12.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425010528","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental monitoring using nontarget analysis (NTA) has become a powerful tool for identifying complex mixtures of organic micropollutants in aquatic systems. Herein, we developed an integrated screening strategy that combines wide-scope NTA with class-specific NTA to comprehensively characterize micropollutant occurrence in the Chaobai River, Beijing, with a watershed that features a variety of human impacts and land cover patterns. In addition to the 293 micropollutants identified through target analysis and wide-scope NTA, class-specific NTA revealed 161 additional nontarget chemicals, including 28 per- and polyfluoroalkyl substances, 50 organophosphate esters, and 83 antibiotics and their transformation products, significantly expanding the chemical space identified by traditional wide-scope NTA. Concentrations of the 454 micropollutants spanned over five orders of magnitudes, with 27 exceeding 100 ng/L (median concentration) and 23 detected in over 90 % of samples. Spatiotemporal analysis revealed four distinct micropollutant distribution patterns, with two sample groups exhibiting significantly different profiles. The lower river, influenced by reclaimed water, showed higher concentrations and more frequent detections of wastewater-derived micropollutants, whereas the upper river and reservoirs were dominated by agriculture-related micropollutants. Key micropollutants and water quality parameters were identified as robust indicators for tracking occurrence patterns. This integrated screening strategy enables the detection of a broader spectrum of chemicals and provides deeper insights into their distribution, offering a transformative and expandable framework for future environmental monitoring and risk assessment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.