Anionic Coordination-Regulated Metal-Organic Cages for Efficient CO2 Photoreduction.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Linjing Huang,Liyang Qin,Sijie Wan,Yayu Yan,Shaowen Cao,Jian Zhang,Tianhua Zhou
{"title":"Anionic Coordination-Regulated Metal-Organic Cages for Efficient CO2 Photoreduction.","authors":"Linjing Huang,Liyang Qin,Sijie Wan,Yayu Yan,Shaowen Cao,Jian Zhang,Tianhua Zhou","doi":"10.1002/anie.202509280","DOIUrl":null,"url":null,"abstract":"Photocatalytic reduction of carbon dioxide (CO2) provides a promising strategy for producing high-value chemical and fuel. However, developing high-performance photocatalysts for CO2 reduction remain a great challenge due to the poor stability of reaction intermediates. Herein, we present an anionic coordination strategy to facilitate intermediates by the construction of halogen-coordinated metal-organic cages (Ni8L12X4, X = Cl, Br, I). Theory calculations show that the formation of the *COOH intermediate is the rate-limiting step and halogen coordination effectively regulates the energy barrier for this reaction. Notably, iodide anions significantly reduce the energy gap between Ni d orbitals and iodide p orbitals, facilitating electron transfer from Ni center to the adsorbed CO2 and promote the production of *COOH. As a result, Ni8L12I4 demonstrates superior performance with a CO production rate of 2680.23 μmol g-1 h-1 and 95% selectivity, outperforming Cl-coordinated and Br-coordinated Ni MOC by 200 and 5-fold, respectively. This work opens a new coordination engineering strategy for fabricating efficient photocatalysts for CO2 reduction.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"648 1","pages":"e202509280"},"PeriodicalIF":16.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202509280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic reduction of carbon dioxide (CO2) provides a promising strategy for producing high-value chemical and fuel. However, developing high-performance photocatalysts for CO2 reduction remain a great challenge due to the poor stability of reaction intermediates. Herein, we present an anionic coordination strategy to facilitate intermediates by the construction of halogen-coordinated metal-organic cages (Ni8L12X4, X = Cl, Br, I). Theory calculations show that the formation of the *COOH intermediate is the rate-limiting step and halogen coordination effectively regulates the energy barrier for this reaction. Notably, iodide anions significantly reduce the energy gap between Ni d orbitals and iodide p orbitals, facilitating electron transfer from Ni center to the adsorbed CO2 and promote the production of *COOH. As a result, Ni8L12I4 demonstrates superior performance with a CO production rate of 2680.23 μmol g-1 h-1 and 95% selectivity, outperforming Cl-coordinated and Br-coordinated Ni MOC by 200 and 5-fold, respectively. This work opens a new coordination engineering strategy for fabricating efficient photocatalysts for CO2 reduction.
阴离子配位调控的金属有机笼高效CO2光还原。
光催化还原二氧化碳(CO2)为生产高价值化学品和燃料提供了一种很有前途的策略。然而,由于反应中间体稳定性差,开发用于CO2还原的高性能光催化剂仍然是一个巨大的挑战。本文提出了一种阴离子配位策略,通过构建卤素配位金属-有机笼(Ni8L12X4, X = Cl, Br, I)来促进中间体。理论计算表明,*COOH中间体的生成是该反应的限速步骤,卤素配位有效地调节了该反应的能垒。值得注意的是,碘化物阴离子显著减小了Ni d轨道和碘化物p轨道之间的能隙,促进了电子从Ni中心向吸附的CO2转移,促进了*COOH的生成。结果表明,Ni8L12I4的CO产率为2680.23 μmol g-1 h-1,选择性为95%,分别是cl -配位和br -配位Ni MOC的200倍和5倍。这项工作为制造高效的CO2还原光催化剂开辟了一种新的协同工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信