{"title":"A Biomimetic Janus Fibrous Membrane for Scarless Achilles Tendon Regeneration via Synergistic Modulation of an Oxidative-Inflammatory Cascade.","authors":"Zijian Li,Hufei Wang,Xiao Liu,Zhengyang Chang,Jianpeng Gao,Junyao Cheng,Licheng Zhang,Xing Wang,Ming Li,Jianheng Liu,Peifu Tang","doi":"10.1021/acsami.5c05336","DOIUrl":null,"url":null,"abstract":"Achilles tendon injuries present significant clinical challenges due to limited regenerative capacity and frequent adhesion formation. Here, we report a melatonin-loaded Janus fibrous membrane (MLT@JFM) that mimics the native paratenon's structure and function to promote scarless tendon healing. The biomimetic membrane consists of an inner methacrylated silk fibroin (SFMA) layer that promotes tendon stem cell functions and an outer melatonin-loaded polycaprolactone methacryloyl (PCLMA) layer that prevents adhesion formation. Through photo-cross-linking and structural interlocking, MLT@JFM achieves excellent mechanical properties and stable fixation around injured tendons. In vitro studies demonstrate that MLT@JFM effectively scavenges reactive oxygen species, modulates macrophage polarization, and maintains tendon stem cell phenotype under inflammatory conditions. In a rat Achilles tendon injury model, MLT@JFM significantly enhances functional recovery and biomechanical properties while preventing adhesion formation. Transcriptomic analysis reveals that MLT@JFM promotes scarless healing through synergistic regulation of oxidative-inflammatory cascades and the enhancement of tissue regeneration. This study presents MLT@JFM as a promising therapeutic strategy for tendon repair and provides new insights into biomaterial-mediated tissue regeneration.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"2 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c05336","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Achilles tendon injuries present significant clinical challenges due to limited regenerative capacity and frequent adhesion formation. Here, we report a melatonin-loaded Janus fibrous membrane (MLT@JFM) that mimics the native paratenon's structure and function to promote scarless tendon healing. The biomimetic membrane consists of an inner methacrylated silk fibroin (SFMA) layer that promotes tendon stem cell functions and an outer melatonin-loaded polycaprolactone methacryloyl (PCLMA) layer that prevents adhesion formation. Through photo-cross-linking and structural interlocking, MLT@JFM achieves excellent mechanical properties and stable fixation around injured tendons. In vitro studies demonstrate that MLT@JFM effectively scavenges reactive oxygen species, modulates macrophage polarization, and maintains tendon stem cell phenotype under inflammatory conditions. In a rat Achilles tendon injury model, MLT@JFM significantly enhances functional recovery and biomechanical properties while preventing adhesion formation. Transcriptomic analysis reveals that MLT@JFM promotes scarless healing through synergistic regulation of oxidative-inflammatory cascades and the enhancement of tissue regeneration. This study presents MLT@JFM as a promising therapeutic strategy for tendon repair and provides new insights into biomaterial-mediated tissue regeneration.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.