A Promising Short-Wave UV NLO Crystal with an Optimized KBBF-like Structure and Well-Balanced Properties Achieved via a Chemical Substitution Strategy.
Shuaifeng Li,Mengru Liu,Peng Zhao,Huijian Zhao,Ning Ye,Zhanggui Hu,Conggang Li
{"title":"A Promising Short-Wave UV NLO Crystal with an Optimized KBBF-like Structure and Well-Balanced Properties Achieved via a Chemical Substitution Strategy.","authors":"Shuaifeng Li,Mengru Liu,Peng Zhao,Huijian Zhao,Ning Ye,Zhanggui Hu,Conggang Li","doi":"10.1021/acs.inorgchem.5c02281","DOIUrl":null,"url":null,"abstract":"Balancing a short ultraviolet (UV) cutoff edge, a sufficient birefringence, and a strong second-harmonic generation (SHG) response is crucial yet challenging in the quest for beryllium-free deep-UV nonlinear optical (NLO) crystals. Herein, we present the synthesis of an optimized KBe2BO3F2 (KBBF)-like fluorinated borate crystal, Rb3Sr3Li2Al4B6O20F (RSLABOF), through a chemical substitution strategy achieved by substituting Be2+ cations in the KBBF structure with Al3+ and Li+ cations. RSALBOF crystallizes in R32 (No. 155), inheriting the structural merits of KBBF and achieving a well-balanced property, including a strong SHG efficiency equivalent to 1.4 times that of KDP, a short UV absorption cutoff edge (<200 nm), and a favorable birefringence value of 0.064 at 1064 nm. Moreover, the layered structure of RSLABOF features a reinforced interlayer bonding facilitated by Sr-O bonds, which is approximately 4.7 times stronger than that in KBBF, alleviating the propensity for layering growth. Theoretical calculations revealed that the significant SHG intensity primarily originates from the in-layer uniformly aligned [BO3] groups in RSLABOF. These observations highlight the potential of RSLABOF crystals as beryllium-free short-wave UV NLO crystals.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"3 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c02281","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Balancing a short ultraviolet (UV) cutoff edge, a sufficient birefringence, and a strong second-harmonic generation (SHG) response is crucial yet challenging in the quest for beryllium-free deep-UV nonlinear optical (NLO) crystals. Herein, we present the synthesis of an optimized KBe2BO3F2 (KBBF)-like fluorinated borate crystal, Rb3Sr3Li2Al4B6O20F (RSLABOF), through a chemical substitution strategy achieved by substituting Be2+ cations in the KBBF structure with Al3+ and Li+ cations. RSALBOF crystallizes in R32 (No. 155), inheriting the structural merits of KBBF and achieving a well-balanced property, including a strong SHG efficiency equivalent to 1.4 times that of KDP, a short UV absorption cutoff edge (<200 nm), and a favorable birefringence value of 0.064 at 1064 nm. Moreover, the layered structure of RSLABOF features a reinforced interlayer bonding facilitated by Sr-O bonds, which is approximately 4.7 times stronger than that in KBBF, alleviating the propensity for layering growth. Theoretical calculations revealed that the significant SHG intensity primarily originates from the in-layer uniformly aligned [BO3] groups in RSLABOF. These observations highlight the potential of RSLABOF crystals as beryllium-free short-wave UV NLO crystals.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.