{"title":"Intelligent Design and Simulation of High-Entropy Alloys via Machine Learning and Multiobjective Optimization Algorithms","authors":"Jian Cao, Zian Chen, Haichao Li, Chang Liu, Yutong He, Hongbin Zhang, Lina Xu*, Hongping Xiao, Xiao He* and Guoyong Fang*, ","doi":"10.1021/acs.jctc.5c00143","DOIUrl":null,"url":null,"abstract":"<p >High-entropy alloys (HEAs) are innovative metallic materials with unique properties and wide potential applications. However, the compositional complexity of HEAs poses a great challenge to investigate the physical mechanisms controlling their performance. Herein, we propose a novel framework composed of high-entropy alloys design and simulations (HEADS) that combines machine learning (ML), molecular dynamics (MD), and multiobjective optimization algorithm (MOOA). When considering the disordered characteristics of high-entropy alloys, this framework initially predicts the phase structure of high-entropy alloys with different compositions by using ML and subsequently performs theoretical modeling. Tensile simulations were conducted via MD to generate the mechanical property data, which served as the foundation for further optimization. Within this framework, deep neural network (DNN) models conduct multitask regression to fit the data obtained from the MD simulations, thereby developing an accurate performance prediction model. This model was employed as the fitness function in the multiobjective optimization algorithm to optimize the elastic modulus (EM) and ultimate tensile strength (UTS) of HEAs. The framework is validated using the FeNiCrCoCuAlMg alloy and supports flexible weight assignments for EM and UTS, allowing tailored optimization based on specific application requirements. HEADS framework can provide a robust strategy to accelerate the development of high-performance HEAs and offer new insights for engineering applications requiring advanced materials with optimized properties.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"21 14","pages":"7051–7061"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.5c00143","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloys (HEAs) are innovative metallic materials with unique properties and wide potential applications. However, the compositional complexity of HEAs poses a great challenge to investigate the physical mechanisms controlling their performance. Herein, we propose a novel framework composed of high-entropy alloys design and simulations (HEADS) that combines machine learning (ML), molecular dynamics (MD), and multiobjective optimization algorithm (MOOA). When considering the disordered characteristics of high-entropy alloys, this framework initially predicts the phase structure of high-entropy alloys with different compositions by using ML and subsequently performs theoretical modeling. Tensile simulations were conducted via MD to generate the mechanical property data, which served as the foundation for further optimization. Within this framework, deep neural network (DNN) models conduct multitask regression to fit the data obtained from the MD simulations, thereby developing an accurate performance prediction model. This model was employed as the fitness function in the multiobjective optimization algorithm to optimize the elastic modulus (EM) and ultimate tensile strength (UTS) of HEAs. The framework is validated using the FeNiCrCoCuAlMg alloy and supports flexible weight assignments for EM and UTS, allowing tailored optimization based on specific application requirements. HEADS framework can provide a robust strategy to accelerate the development of high-performance HEAs and offer new insights for engineering applications requiring advanced materials with optimized properties.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.