Anisotropic turbulent flow of water through converging wavy-aluminum-circular pipe with five half-cycles: insight into the significance of four-branch minor-inlet angle
Fuzhang Wang, Isaac Lare Animasaun, Taseer Muhammad
{"title":"Anisotropic turbulent flow of water through converging wavy-aluminum-circular pipe with five half-cycles: insight into the significance of four-branch minor-inlet angle","authors":"Fuzhang Wang, Isaac Lare Animasaun, Taseer Muhammad","doi":"10.1515/jnet-2025-0046","DOIUrl":null,"url":null,"abstract":"Accurately predicting turbulent water flow in duct systems remains a challenging problem, particularly when anisotropic turbulence effects are significant. Bridging the gap between industrial applications and academic research requires a deeper understanding of such complex flows. This study investigates a less commonly analyzed configuration involving a horizontal aluminum duct transitioning into a converging wavy duct. The wavy section consists of 2.5 full sinusoidal periods, ending in a reduced outlet diameter. In addition, the effect of incorporating four minor/secondary inlets, arranged as branches at different angles, was examined and presented herein. Aluminum was selected for its low density and corrosion resistance, which are beneficial in experimental and industrial setups. Initially, the duct was analyzed in an unbranched configuration. The study then progressed to include the four secondary/minor branch inlets at various angles. The simulation results were validated by comparison with a solution for a simple flow in a 70 mm duct. Additional verification was provided by employing other CFD codes, along with grid convergence index and mesh sensitivity analyses, improving the confidence in the simulation results. Branch angles influences turbulence intensity depending on flow conditions and angle magnitude. Sharper branch angles are particularly effective, inducing greater turbulence at the converged outlet. Higher inlet temperatures and velocities lead to increased Reynolds stress due to enhanced energy transfer and elevated turbulent kinetic energy. Specifically, an increase in inlet velocity at a 45<jats:italic>°</jats:italic> branch angle further augments turbulent momentum transfer, resulting in more controlled mixing along the duct.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"69 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2025-0046","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting turbulent water flow in duct systems remains a challenging problem, particularly when anisotropic turbulence effects are significant. Bridging the gap between industrial applications and academic research requires a deeper understanding of such complex flows. This study investigates a less commonly analyzed configuration involving a horizontal aluminum duct transitioning into a converging wavy duct. The wavy section consists of 2.5 full sinusoidal periods, ending in a reduced outlet diameter. In addition, the effect of incorporating four minor/secondary inlets, arranged as branches at different angles, was examined and presented herein. Aluminum was selected for its low density and corrosion resistance, which are beneficial in experimental and industrial setups. Initially, the duct was analyzed in an unbranched configuration. The study then progressed to include the four secondary/minor branch inlets at various angles. The simulation results were validated by comparison with a solution for a simple flow in a 70 mm duct. Additional verification was provided by employing other CFD codes, along with grid convergence index and mesh sensitivity analyses, improving the confidence in the simulation results. Branch angles influences turbulence intensity depending on flow conditions and angle magnitude. Sharper branch angles are particularly effective, inducing greater turbulence at the converged outlet. Higher inlet temperatures and velocities lead to increased Reynolds stress due to enhanced energy transfer and elevated turbulent kinetic energy. Specifically, an increase in inlet velocity at a 45° branch angle further augments turbulent momentum transfer, resulting in more controlled mixing along the duct.
期刊介绍:
The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena.
Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level.
The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.