Hanwen Guo, Xiangkun Zhou, Bo Gao, Jianing Yang, Lingyun Zhang, Junya Wang, Zheng You
{"title":"Metasurface-based large field-of-view light receiver for enhanced LiDAR systems","authors":"Hanwen Guo, Xiangkun Zhou, Bo Gao, Jianing Yang, Lingyun Zhang, Junya Wang, Zheng You","doi":"10.1515/nanoph-2025-0161","DOIUrl":null,"url":null,"abstract":"This paper presents a metasurface-based light receiver tailored for compact off-axis light detection and ranging (LiDAR) systems, addressing the critical challenge of simultaneously enhancing the field of view (FOV) and effective signal reception while adhering to strict size and weight limitations. A general design principle for the metasurface-based light receiver with large FOV capability is proposed, leveraging mapping relations to achieve optimal performance. As a proof of concept, a 20-mm-diameter 4-region metasurface device was designed and fabricated by deep ultraviolet (DUV) projection stepper lithography on an 8-inch fused silica wafer. The metasurface-based light receiver achieves a large FOV of ±30° and demonstrates a significant power enhancement ranging from 1.5 to 3 times at 940 nm when coupled with a 3-mm-diameter avalanche photodiode (APD). The innovation not only establishes a new paradigm for compact, high-performance LiDAR systems but also enables deployment in advanced fields such as unmanned aerial vehicles (UAVs) and miniaturized robots.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"272 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0161","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a metasurface-based light receiver tailored for compact off-axis light detection and ranging (LiDAR) systems, addressing the critical challenge of simultaneously enhancing the field of view (FOV) and effective signal reception while adhering to strict size and weight limitations. A general design principle for the metasurface-based light receiver with large FOV capability is proposed, leveraging mapping relations to achieve optimal performance. As a proof of concept, a 20-mm-diameter 4-region metasurface device was designed and fabricated by deep ultraviolet (DUV) projection stepper lithography on an 8-inch fused silica wafer. The metasurface-based light receiver achieves a large FOV of ±30° and demonstrates a significant power enhancement ranging from 1.5 to 3 times at 940 nm when coupled with a 3-mm-diameter avalanche photodiode (APD). The innovation not only establishes a new paradigm for compact, high-performance LiDAR systems but also enables deployment in advanced fields such as unmanned aerial vehicles (UAVs) and miniaturized robots.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.