Joonho Kang, Changkyun Lee, Haejun Chung, Peter Bermel
{"title":"Design strategies, manufacturing, and applications of radiative cooling technologies","authors":"Joonho Kang, Changkyun Lee, Haejun Chung, Peter Bermel","doi":"10.1515/nanoph-2025-0159","DOIUrl":null,"url":null,"abstract":"Radiative cooling is a passive cooling strategy that leverages thermal radiation to dissipate heat into a cooler environment, offering an energy-efficient and environmentally friendly alternative to conventional cooling technologies. Recent advancements in material science and nanophotonics have led to the development of engineered radiative cooling materials with tailored optical and thermal properties. Photonic structures, multilayer films, metamaterials, and polymer-based composites have demonstrated enhanced cooling performance by maximizing solar reflectance and infrared emissivity. These innovations have facilitated scalable, lightweight, and durable cooling solutions suitable for diverse applications, including building envelopes, electronic devices, and urban infrastructure. Nonetheless, several challenges must be solved to achieve widespread commercialization. These include further research into robust and long-lasting materials to address material degradation, innovations in fabrication techniques to reduce cost, design approaches to make more effective use of these materials and processes, and adaptability to hot and humid climates. Ongoing research continues to refine material and structural design, improve manufacturing methods, and expand the range of practical applications. By overcoming these challenges, radiative cooling has the potential to significantly reduce energy consumption and enhance climate resilience, positioning itself as a crucial component of future sustainable cooling technologies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"27 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2025-0159","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiative cooling is a passive cooling strategy that leverages thermal radiation to dissipate heat into a cooler environment, offering an energy-efficient and environmentally friendly alternative to conventional cooling technologies. Recent advancements in material science and nanophotonics have led to the development of engineered radiative cooling materials with tailored optical and thermal properties. Photonic structures, multilayer films, metamaterials, and polymer-based composites have demonstrated enhanced cooling performance by maximizing solar reflectance and infrared emissivity. These innovations have facilitated scalable, lightweight, and durable cooling solutions suitable for diverse applications, including building envelopes, electronic devices, and urban infrastructure. Nonetheless, several challenges must be solved to achieve widespread commercialization. These include further research into robust and long-lasting materials to address material degradation, innovations in fabrication techniques to reduce cost, design approaches to make more effective use of these materials and processes, and adaptability to hot and humid climates. Ongoing research continues to refine material and structural design, improve manufacturing methods, and expand the range of practical applications. By overcoming these challenges, radiative cooling has the potential to significantly reduce energy consumption and enhance climate resilience, positioning itself as a crucial component of future sustainable cooling technologies.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.