Is Artificial Intelligence an accurate tool for improving access to ophthalmological services in rural areas? A narrative review.

Karol Czesak, Zuzanna Gałuszka, Olga Adamska, Maciej Kamiński, Anna Pierzak, Agnieszka Kamińska
{"title":"Is Artificial Intelligence an accurate tool for improving access to ophthalmological services in rural areas? A narrative review.","authors":"Karol Czesak, Zuzanna Gałuszka, Olga Adamska, Maciej Kamiński, Anna Pierzak, Agnieszka Kamińska","doi":"10.26444/aaem/195109","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The integration of artificial intelligence (AI) in ophthalmology, specifically through the use of Optical Coherence Tomography (OCT) images, has marked a significant advancement in the detection and management of ocular diseases. The article compares the detection of eye conditions by health professionals using Optical Coherence Tomography (OCT) with AI abilities.</p><p><strong>Review methods: </strong>Online databases were searched for articles discussing the effectiveness of AI in OCT analyses and assessment of the accuracy and agreement of AI algorithms with human experts. Key words included 'OCT', 'AI', 'comparison' and 'effectiveness''.</p><p><strong>Results: </strong>AI algorithms have demonstrated the capability to automatically segment retinal layers, detect and quantify pathological changes, and predict disease progression. The application of AI helps address the challenge of artifacts in OCT images, enhancing the accuracy of tissue structure segmentation and improving diagnostic precision.</p><p><strong>Conclusions: </strong>This article explores the comparative effectiveness of AI and human experts in diagnosing ocular conditions using OCT, highlighting AI's potential to complement human expertise and improve patient outcomes. Despite the promising results, variability in AI performance across different studies underscores the need for more robust and standardized AI models, along with high-quality, diverse datasets to ensure consistent and generalizable results.</p>","PeriodicalId":520557,"journal":{"name":"Annals of agricultural and environmental medicine : AAEM","volume":"32 2","pages":"320-322"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of agricultural and environmental medicine : AAEM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26444/aaem/195109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The integration of artificial intelligence (AI) in ophthalmology, specifically through the use of Optical Coherence Tomography (OCT) images, has marked a significant advancement in the detection and management of ocular diseases. The article compares the detection of eye conditions by health professionals using Optical Coherence Tomography (OCT) with AI abilities.

Review methods: Online databases were searched for articles discussing the effectiveness of AI in OCT analyses and assessment of the accuracy and agreement of AI algorithms with human experts. Key words included 'OCT', 'AI', 'comparison' and 'effectiveness''.

Results: AI algorithms have demonstrated the capability to automatically segment retinal layers, detect and quantify pathological changes, and predict disease progression. The application of AI helps address the challenge of artifacts in OCT images, enhancing the accuracy of tissue structure segmentation and improving diagnostic precision.

Conclusions: This article explores the comparative effectiveness of AI and human experts in diagnosing ocular conditions using OCT, highlighting AI's potential to complement human expertise and improve patient outcomes. Despite the promising results, variability in AI performance across different studies underscores the need for more robust and standardized AI models, along with high-quality, diverse datasets to ensure consistent and generalizable results.

人工智能是改善农村地区眼科服务的准确工具吗?叙述性评论
导读:人工智能(AI)在眼科中的整合,特别是通过光学相干断层扫描(OCT)图像的使用,标志着眼部疾病的检测和管理取得了重大进展。本文比较了卫生专业人员使用光学相干断层扫描(OCT)和人工智能能力检测眼睛状况的情况。回顾方法:在在线数据库中搜索讨论人工智能在OCT分析中的有效性以及评估人工智能算法与人类专家的准确性和一致性的文章。关键词包括“OCT”、“AI”、“比较”和“有效性”。结果:人工智能算法已经证明能够自动分割视网膜层,检测和量化病理变化,并预测疾病进展。人工智能的应用有助于解决OCT图像中伪影的挑战,增强组织结构分割的准确性,提高诊断精度。结论:本文探讨了人工智能和人类专家在使用OCT诊断眼部疾病方面的比较有效性,强调了人工智能在补充人类专业知识和改善患者预后方面的潜力。尽管取得了令人鼓舞的结果,但不同研究中人工智能性能的可变性强调了需要更强大和标准化的人工智能模型,以及高质量、多样化的数据集,以确保一致和可推广的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信