Enhanced Active Hydrogen Absorption and Stabilized Cu(I) Species Over Cu-O-Ce Bridges Boosting Electrocatalytic CO2 Reduction to Ethylene.

IF 16.9
Zhenwei Zhao, Yu Zhang, Junjun Li, Bingqing Yao, Hui Zhang, Zhicheng Zhang
{"title":"Enhanced Active Hydrogen Absorption and Stabilized Cu(I) Species Over Cu-O-Ce Bridges Boosting Electrocatalytic CO<sub>2</sub> Reduction to Ethylene.","authors":"Zhenwei Zhao, Yu Zhang, Junjun Li, Bingqing Yao, Hui Zhang, Zhicheng Zhang","doi":"10.1002/anie.202510383","DOIUrl":null,"url":null,"abstract":"<p><p>Rational design of water activation center to promote active hydrogen (*H) generation and stabilize Cu(I) species are significant for the formation of multicarbon (C<sub>2+</sub>) products over Cu-based catalysts in electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Herein, CeO<sub>2</sub> nanograins and CuO nanothorns were selectively deposited on the edges of Cu<sub>2</sub>O cubes through the seed-mediated growth method. The as-synthesized Cu<sub>x</sub>O-CeO<sub>2</sub> composites exhibit enhanced Faradaic efficiency and partial current density of C<sub>2</sub>H<sub>4</sub> compared with Cu<sub>2</sub>O cubes. In situ spectroscopies and theoretical calculations confirm that the Cu-O-Ce bridges in Cu<sub>x</sub>O-CeO<sub>2</sub> composite can effectively enhance *H absorption and stabilize Cu(I) species, facilitating subsequent C-C coupling and further protonation into the key *COCHO intermediate of C<sub>2</sub>H<sub>4</sub>. This work provides new insights into modulating *H absorption and stabilizing Cu(I) species for boosting CO<sub>2</sub> to C<sub>2+</sub> products.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202510383"},"PeriodicalIF":16.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202510383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rational design of water activation center to promote active hydrogen (*H) generation and stabilize Cu(I) species are significant for the formation of multicarbon (C2+) products over Cu-based catalysts in electrocatalytic CO2 reduction reaction (CO2RR). Herein, CeO2 nanograins and CuO nanothorns were selectively deposited on the edges of Cu2O cubes through the seed-mediated growth method. The as-synthesized CuxO-CeO2 composites exhibit enhanced Faradaic efficiency and partial current density of C2H4 compared with Cu2O cubes. In situ spectroscopies and theoretical calculations confirm that the Cu-O-Ce bridges in CuxO-CeO2 composite can effectively enhance *H absorption and stabilize Cu(I) species, facilitating subsequent C-C coupling and further protonation into the key *COCHO intermediate of C2H4. This work provides new insights into modulating *H absorption and stabilizing Cu(I) species for boosting CO2 to C2+ products.

Cu- o - ce桥上活性氢吸收增强和Cu(I)稳定促进电催化CO2还原乙烯
合理设计水活化中心,促进活性氢(*H)的生成和Cu(I)的稳定,对于电催化CO2还原反应(CO2RR)中Cu基催化剂上多碳(C2+)产物的生成具有重要意义。本文通过种子介导生长的方法,将CeO2纳米颗粒和CuO纳米刺选择性地沉积在Cu2O立方体的边缘。与Cu2O立方体相比,合成的Cu2O - ceo2复合材料具有更高的法拉第效率和C2H4的偏电流密度。原位光谱和理论计算证实,CuxO-CeO2复合材料中的Cu- o - ce桥可以有效地增强*H吸收,稳定Cu(I),促进随后的C-C偶联和进一步质子化成C2H4的关键*COCHO中间体。这项工作为调节*H吸收和稳定Cu(I)物种促进CO2生成C2+产品提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信