Visualizing cortical laminar architecture in the living human brain using next-generation ultra-high-gradient diffusion MRI.

Susie Huang, Hansol Lee, Yixin Ma, Kwok-Shing Chan, Eva Krijnen, Laleh Eskandarian, Aneri Bhatt, Julianna Gerold, Mirsad Mahmutovic, Oula Puonti, Xiangrui Zeng, Lucas Jacob Deden Binder, Bruce Fischl, Boris Keil, Gabriel Ramos-Llordén, Eric Klawiter, Hong-Hsi Lee
{"title":"Visualizing cortical laminar architecture in the living human brain using next-generation ultra-high-gradient diffusion MRI.","authors":"Susie Huang, Hansol Lee, Yixin Ma, Kwok-Shing Chan, Eva Krijnen, Laleh Eskandarian, Aneri Bhatt, Julianna Gerold, Mirsad Mahmutovic, Oula Puonti, Xiangrui Zeng, Lucas Jacob Deden Binder, Bruce Fischl, Boris Keil, Gabriel Ramos-Llordén, Eric Klawiter, Hong-Hsi Lee","doi":"10.21203/rs.3.rs-6724971/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing cortical laminar microstructure is essential for understanding human brain function. Leveraging the next-generation Connectome MRI scanner (maximum gradient strength = 500mT/m, slew rate = 600T/m/s), we characterized <i>in vivo</i> cortical laminar cytoarchitecture and myeloarchitecture through cortical depth-dependent analyses of soma and neurite density imaging (SANDI) metrics derived from diffusion MRI, enhanced by a super-resolution technique. SANDI revealed distinct laminar profiles: intra-soma signal fraction <i>f</i> <sub><i>is</i></sub> peaked at ~ 55% cortical depth, while intra-neurite signal fraction <i>f</i> <sub><i>in</i></sub> increased toward deeper layers, consistent with histological patterns. The visual cortex exhibited higher intra-soma signal fraction <i>f</i> <sub><i>is</i></sub> than the motor cortex, particularly in deeper layers. Moreover, intra-soma signal fraction <i>f</i> <sub><i>is</i></sub> correlated positively with cortical curvature in superficial layers and negatively in deeper layers, indicating layer-specific relationships between microstructure and cortical geometry. These findings demonstrate the feasibility of noninvasively mapping cortical laminar architecture, offering a potential surrogate for histology and enabling future studies of normative and pathological brain organization using commercially available high-performance gradient MRI systems.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6724971/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing cortical laminar microstructure is essential for understanding human brain function. Leveraging the next-generation Connectome MRI scanner (maximum gradient strength = 500mT/m, slew rate = 600T/m/s), we characterized in vivo cortical laminar cytoarchitecture and myeloarchitecture through cortical depth-dependent analyses of soma and neurite density imaging (SANDI) metrics derived from diffusion MRI, enhanced by a super-resolution technique. SANDI revealed distinct laminar profiles: intra-soma signal fraction f is peaked at ~ 55% cortical depth, while intra-neurite signal fraction f in increased toward deeper layers, consistent with histological patterns. The visual cortex exhibited higher intra-soma signal fraction f is than the motor cortex, particularly in deeper layers. Moreover, intra-soma signal fraction f is correlated positively with cortical curvature in superficial layers and negatively in deeper layers, indicating layer-specific relationships between microstructure and cortical geometry. These findings demonstrate the feasibility of noninvasively mapping cortical laminar architecture, offering a potential surrogate for histology and enabling future studies of normative and pathological brain organization using commercially available high-performance gradient MRI systems.

使用新一代超高梯度扩散MRI可视化人脑皮层层状结构。
表征皮层层状结构对理解人类大脑功能至关重要。利用下一代连接体MRI扫描仪(最大梯度强度= 500mT/m,旋转速率= 600T/m/s),我们通过扩散MRI衍生的躯体和神经突密度成像(SANDI)指标的皮质深度依赖分析,通过超分辨率技术增强,表征了体内皮层层状细胞结构和骨髓结构。SANDI显示出明显的层流特征:体内信号分数f在皮层深度约55%处达到峰值,而神经突内信号分数f在更深层处增加,与组织学模式一致。视觉皮质比运动皮质表现出更高的胞内信号分数,尤其是在更深的层。此外,体细胞内信号分数f与皮层曲率在表层呈正相关,在深层呈负相关,这表明微观结构与皮层几何形状之间存在层特异性关系。这些发现证明了无创绘制皮层层结构的可行性,为组织学提供了一种潜在的替代方法,并使未来使用商用高性能梯度MRI系统进行规范和病理脑组织的研究成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信