Empiric Azithromycin in COVID-19 Impacts the Respiratory Microbiome and Antimicrobial Resistome without Anti-inflammatory Benefit.

Charles Langelier, Abigail Glascock, Cole Maguire, Hoang Van Phan, Emily Lydon, Carolyn Calfee, David Corry, Farrah Kheradmand, Lindsey Baden, Rafick-Pierre Sekaly, Grace McComsey, Elias Haddad, Charles Cairns, Bali Pulendran, Ana Fernandez-Sesma, Viviana Simon, Jordan Metcalf, Nelson Higuita, William Messer, Mark Davis, Kari C Nadeau, Monica Kraft, Chris Bime, Joanna Schaenman, David Erle, Mark Atkinson, Lauren I R Ehrlich, Esther Melamed, Ruth Montgomery, Albert Shaw, Catherine Hough, Linda Geng, Annmarie Hoch, David Hafler, Alison Augustine, Patrice Becker, Bjoern Peters, Al Ozonoff, Seunghee Kim-Schulze, Florian Krammer, Steven Bosinger, Walter Eckalbar, Matthew Altman, Michael Wilson, Leying Guan, Holden Maecker, Hanno Steen, Joann Diray-Arce, Nadine Rouphael, Steven Kleinstein, Elaine Reed, Ofer Levy, Victoria Chu
{"title":"Empiric Azithromycin in COVID-19 Impacts the Respiratory Microbiome and Antimicrobial Resistome without Anti-inflammatory Benefit.","authors":"Charles Langelier, Abigail Glascock, Cole Maguire, Hoang Van Phan, Emily Lydon, Carolyn Calfee, David Corry, Farrah Kheradmand, Lindsey Baden, Rafick-Pierre Sekaly, Grace McComsey, Elias Haddad, Charles Cairns, Bali Pulendran, Ana Fernandez-Sesma, Viviana Simon, Jordan Metcalf, Nelson Higuita, William Messer, Mark Davis, Kari C Nadeau, Monica Kraft, Chris Bime, Joanna Schaenman, David Erle, Mark Atkinson, Lauren I R Ehrlich, Esther Melamed, Ruth Montgomery, Albert Shaw, Catherine Hough, Linda Geng, Annmarie Hoch, David Hafler, Alison Augustine, Patrice Becker, Bjoern Peters, Al Ozonoff, Seunghee Kim-Schulze, Florian Krammer, Steven Bosinger, Walter Eckalbar, Matthew Altman, Michael Wilson, Leying Guan, Holden Maecker, Hanno Steen, Joann Diray-Arce, Nadine Rouphael, Steven Kleinstein, Elaine Reed, Ofer Levy, Victoria Chu","doi":"10.21203/rs.3.rs-6875205/v1","DOIUrl":null,"url":null,"abstract":"<p><p>Azithromycin is often prescribed unnecessarily for respiratory infections, many of which are viral. During the COVID-19 pandemic, its use was widespread, in part due to alleged therapeutic benefits, which have since been disproven. Here, we sought to understand the impact of azithromycin exposure on the respiratory microbiome, antimicrobial resistome, and host immune response in a prospective multicenter cohort of 1164 patients hospitalized for SARS-CoV-2 infection. Using longitudinal nasal metatranscriptomics, we compared patients treated with azithromycin (n=366, 31.4%) to those who received no antibiotics (n=474, 40.7%) or antibiotics other than azithromycin (n=324, 27.8%). We found that azithromycin treatment altered the community composition of the nasal microbiome, reducing bacterial relative abundance, increasing fungal relative abundance, and increasing potentially pathogenic taxa such as <i>Klebsiellaand Staphylococcus</i>. Azithromycin treatment was most notably associated with increases in the number of detectably expressed macrolide/lincosamide/streptogramin (MLS) antimicrobial resistance genes, as well as their relative proportion in the resistome, with changes observable after one day of exposure. Of the MLS resistance genes, the expression of <i>ermC, msrA</i> and <i>ermX</i> increased the most in patients receiving azithromycin. Correlation analyses demonstrated that MLS resistance gene expression was significantly associated with the abundance of several taxa, including both commensal (e.g., <i>Dolosigranulum, Corynebacterium</i>) and potentially pathogenic genera (e.g., <i>Streptococcus, Staphylococcus</i>). Assessment of the peripheral blood and upper airway host transcriptome demonstrated no differences in the expression of inflammatory genes. Taken together, our findings demonstrate that azithromycin treatment in COVID-19 leads to dysbiosis of the upper respiratory microbiome and changes in the expression of MLS resistance genes, without apparent anti-inflammatory benefit.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6875205/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Azithromycin is often prescribed unnecessarily for respiratory infections, many of which are viral. During the COVID-19 pandemic, its use was widespread, in part due to alleged therapeutic benefits, which have since been disproven. Here, we sought to understand the impact of azithromycin exposure on the respiratory microbiome, antimicrobial resistome, and host immune response in a prospective multicenter cohort of 1164 patients hospitalized for SARS-CoV-2 infection. Using longitudinal nasal metatranscriptomics, we compared patients treated with azithromycin (n=366, 31.4%) to those who received no antibiotics (n=474, 40.7%) or antibiotics other than azithromycin (n=324, 27.8%). We found that azithromycin treatment altered the community composition of the nasal microbiome, reducing bacterial relative abundance, increasing fungal relative abundance, and increasing potentially pathogenic taxa such as Klebsiellaand Staphylococcus. Azithromycin treatment was most notably associated with increases in the number of detectably expressed macrolide/lincosamide/streptogramin (MLS) antimicrobial resistance genes, as well as their relative proportion in the resistome, with changes observable after one day of exposure. Of the MLS resistance genes, the expression of ermC, msrA and ermX increased the most in patients receiving azithromycin. Correlation analyses demonstrated that MLS resistance gene expression was significantly associated with the abundance of several taxa, including both commensal (e.g., Dolosigranulum, Corynebacterium) and potentially pathogenic genera (e.g., Streptococcus, Staphylococcus). Assessment of the peripheral blood and upper airway host transcriptome demonstrated no differences in the expression of inflammatory genes. Taken together, our findings demonstrate that azithromycin treatment in COVID-19 leads to dysbiosis of the upper respiratory microbiome and changes in the expression of MLS resistance genes, without apparent anti-inflammatory benefit.

阿奇霉素对COVID-19患者呼吸道微生物组和抗微生物抵抗组的影响无抗炎作用
阿奇霉素经常被不必要地用于呼吸道感染,其中许多是病毒性感染。在2019冠状病毒病大流行期间,它被广泛使用,部分原因是所谓的治疗益处,但后来被证明是错误的。在这项研究中,我们试图了解阿奇霉素暴露对1164例SARS-CoV-2感染住院患者呼吸道微生物组、抗菌素抵抗组和宿主免疫反应的影响。使用纵向鼻偏转录组学,我们比较了使用阿奇霉素治疗的患者(n=366, 31.4%)与未使用抗生素的患者(n=474, 40.7%)或非阿奇霉素治疗的患者(n=324, 27.8%)。我们发现,阿奇霉素治疗改变了鼻腔微生物群落组成,降低了细菌的相对丰度,增加了真菌的相对丰度,增加了克雷伯氏菌和葡萄球菌等潜在致病性分类群。阿奇霉素治疗与可检测到的大环内酯类/利可沙胺类/链状gramin (MLS)抗菌素耐药基因的数量及其在抵抗组中的相对比例的增加最显著相关,并在暴露一天后观察到变化。MLS耐药基因中,ermC、msrA和ermX在阿奇霉素组的表达增加最多。相关分析表明,MLS抗性基因的表达与几个分类群的丰度显著相关,包括共生属(如Dolosigranulum,棒状杆菌)和潜在致病性属(如链球菌,葡萄球菌)。外周血和上呼吸道宿主转录组的评估显示炎症基因的表达没有差异。综上所述,我们的研究结果表明,阿奇霉素治疗COVID-19导致上呼吸道微生物群失调和MLS耐药基因表达改变,没有明显的抗炎作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信