Casey Lam, Olivia Lanchoney, Vishnu Maddipatla, Nune Markosyan, Nikhil Joshi, Courtney Ray Fofana, Shan Zeng, Ronald P DeMatteo, Robert H Vonderheide, Jennifer Q Zhang
{"title":"CD40 agonism enhances immune checkpoint blockade and generates immunologic memory via CD4<sup>+</sup> T cells in ERα+ mammary tumors.","authors":"Casey Lam, Olivia Lanchoney, Vishnu Maddipatla, Nune Markosyan, Nikhil Joshi, Courtney Ray Fofana, Shan Zeng, Ronald P DeMatteo, Robert H Vonderheide, Jennifer Q Zhang","doi":"10.21203/rs.3.rs-6823527/v1","DOIUrl":null,"url":null,"abstract":"<p><p>There has been marked improvement in the clinical outcome of triple-negative breast cancer (TNBC) with the use of immune checkpoint blockade (ICB) although serious immune-related adverse effects are not uncommon. Unlike TNBC, ERα + breast tumors are largely unresponsive to ICB. Here we demonstrate defective priming by cross-presenting conventional dendritic cells (cDCs) and a blunted response to ICB in ERα + mouse mammary tumors compared to TNBC. Systemic administration of an agonistic CD40 antibody (aCD40) induced T cell proliferation and activation in tumor-draining lymph nodes and attracted effector T cells to the tumor bed from the periphery. This effect was largely due to activation, maturation and migration of type 1 conventional dendritic cells (cDC1s). aCD40 alone slowed tumor growth in ERα + tumors but its combination with ICB cured tumor-bearing mice, accomplishing a \"vaccine effect\" and the immune-mediated rejection of tumor rechallenge. The anti-tumor effect of aCD40 effect was cDC1 and CD8 + T cell-dependent, whereas the rejection of secondary tumor rechallenge in cured mice required CD4 + T cells. Importantly, intra-tumoral administration of aCD40 combined with systemic or intra-tumoral ICB - to mimic neoadjuvant therapeutic approaches-induced complete regressions of both treated and distant tumors. These findings indicate that aCD40 achieves DC activation required for the response to immunotherapy in ERα + tumors and further supports intra-tumoral administration of both aCD40 and ICB as an effective treatment that might limit systemic exposure and lower risk of immune-related toxicity.</p>","PeriodicalId":519972,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-6823527/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There has been marked improvement in the clinical outcome of triple-negative breast cancer (TNBC) with the use of immune checkpoint blockade (ICB) although serious immune-related adverse effects are not uncommon. Unlike TNBC, ERα + breast tumors are largely unresponsive to ICB. Here we demonstrate defective priming by cross-presenting conventional dendritic cells (cDCs) and a blunted response to ICB in ERα + mouse mammary tumors compared to TNBC. Systemic administration of an agonistic CD40 antibody (aCD40) induced T cell proliferation and activation in tumor-draining lymph nodes and attracted effector T cells to the tumor bed from the periphery. This effect was largely due to activation, maturation and migration of type 1 conventional dendritic cells (cDC1s). aCD40 alone slowed tumor growth in ERα + tumors but its combination with ICB cured tumor-bearing mice, accomplishing a "vaccine effect" and the immune-mediated rejection of tumor rechallenge. The anti-tumor effect of aCD40 effect was cDC1 and CD8 + T cell-dependent, whereas the rejection of secondary tumor rechallenge in cured mice required CD4 + T cells. Importantly, intra-tumoral administration of aCD40 combined with systemic or intra-tumoral ICB - to mimic neoadjuvant therapeutic approaches-induced complete regressions of both treated and distant tumors. These findings indicate that aCD40 achieves DC activation required for the response to immunotherapy in ERα + tumors and further supports intra-tumoral administration of both aCD40 and ICB as an effective treatment that might limit systemic exposure and lower risk of immune-related toxicity.