Utilizing virus genomic surveillance to predict vaccine effectiveness.

Jiye Kwon, Ke Li, Joshua L Warren, Sameer Pandya, Anne M Hahn, Virginia E Pitzer, Daniel E Weinberger, Nathan D Grubaugh
{"title":"Utilizing virus genomic surveillance to predict vaccine effectiveness.","authors":"Jiye Kwon, Ke Li, Joshua L Warren, Sameer Pandya, Anne M Hahn, Virginia E Pitzer, Daniel E Weinberger, Nathan D Grubaugh","doi":"10.1101/2025.06.20.25329795","DOIUrl":null,"url":null,"abstract":"<p><p>As new vaccines are being developed for fast-evolving viruses, determining when and how to update them, and what data should inform these decisions, remains a significant challenge. We developed a model to inform these vaccine updates in near real-time and applied it to SARS-CoV-2 by quantifying the relationship between vaccine effectiveness (VE) and genetic distance from mRNA vaccine formulation sequences using 10,156 genomes from Connecticut (April 2021-July 2024) and data from over one million controls, employing a two-stage statistical approach. We showed a strong inverse correlation between spike gene amino acid distance and VE; every 10 amino acid substitutions away from the vaccine sequences resulted in a 15.4% (95% credible intervals (CrI): -2.0%, 34.6%) reduction in VE. Notably, this framework allows us to quantify the anticipated impact of emerging variants on VE, as demonstrated by the predicted 43.4% (95% CrI: -5.7%, 90.1%) drop in VE for the 2023/24 vaccine following the emergence of JN.1 variants based on sequence data alone. By linking amino acid substitutions to VE, this approach leverages genomic surveillance to monitor population-level protection and inform timely vaccine updates.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204263/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.20.25329795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As new vaccines are being developed for fast-evolving viruses, determining when and how to update them, and what data should inform these decisions, remains a significant challenge. We developed a model to inform these vaccine updates in near real-time and applied it to SARS-CoV-2 by quantifying the relationship between vaccine effectiveness (VE) and genetic distance from mRNA vaccine formulation sequences using 10,156 genomes from Connecticut (April 2021-July 2024) and data from over one million controls, employing a two-stage statistical approach. We showed a strong inverse correlation between spike gene amino acid distance and VE; every 10 amino acid substitutions away from the vaccine sequences resulted in a 15.4% (95% credible intervals (CrI): -2.0%, 34.6%) reduction in VE. Notably, this framework allows us to quantify the anticipated impact of emerging variants on VE, as demonstrated by the predicted 43.4% (95% CrI: -5.7%, 90.1%) drop in VE for the 2023/24 vaccine following the emergence of JN.1 variants based on sequence data alone. By linking amino acid substitutions to VE, this approach leverages genomic surveillance to monitor population-level protection and inform timely vaccine updates.

利用病毒基因组监测预测疫苗有效性。
随着针对快速演变的病毒开发新疫苗,确定何时以及如何更新疫苗,以及哪些数据应为这些决定提供依据,仍然是一项重大挑战。我们采用两阶段统计方法,利用来自康涅狄格州(2021年4月至2024年7月)的10,156个基因组和来自100多万对照的数据,开发了一个模型,以近实时地通知这些疫苗更新,并通过量化疫苗有效性(VE)与mRNA疫苗配方序列遗传距离的关系,将其应用于SARS-CoV-2。结果表明,穗基因氨基酸距离与VE呈显著负相关;每隔10个氨基酸取代疫苗序列,VE降低15.4%(95%可信区间(CrI): -2.0%, 34.6%)。值得注意的是,该框架使我们能够量化新出现的变异对VE的预期影响,正如仅基于序列数据预测的2023/24疫苗在出现JN.1变异后VE下降43.4% (95% CrI: -5.7%, 90.1%)所证明的那样。通过将氨基酸替代与VE联系起来,该方法利用基因组监测来监测人群水平的保护并及时通知疫苗更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信