Optical blood flow monitoring in humans with SNSPDs and high-density SPADs.

Carsi Kim, Christopher H Moore, Chien-Sing Poon, Michael A Wayne, Paul Mos, Arin Ulku, Timothy M Rambo, Aaron J Miller, Claudio Bruschini, Edoardo Charbon, Ulas Sunar
{"title":"Optical blood flow monitoring in humans with SNSPDs and high-density SPADs.","authors":"Carsi Kim, Christopher H Moore, Chien-Sing Poon, Michael A Wayne, Paul Mos, Arin Ulku, Timothy M Rambo, Aaron J Miller, Claudio Bruschini, Edoardo Charbon, Ulas Sunar","doi":"10.1101/2025.06.08.25329202","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous, noninvasive monitoring of cerebral blood flow (CBF) is vital for neurocritical care. Diffuse correlation spectroscopy (DCS) enables assessment of microvascular blood flow by analyzing speckle intensity fluctuations of near-infrared light. In this review, we summarize recent advances in TD-DCS using superconducting nanowire single-photon detectors (SNSPDs) at 1064 nm, as well as complementary developments in high-density CW-DCS systems using single-photon avalanche diode (SPAD) cameras. Time-gated photon detection improves depth sensitivity in TD-DCS, and the use of longer wavelengths provides advantages in tissue penetration, photon throughput, and safety margin under ANSI exposure limits. Clinically feasible SPAD-based implementations, while lacking time-of-flight resolution, enable large signal-to-noise ratio gains via massive pixel averaging and offer a room-temperature, scalable path to high-density optical tissue monitoring. Together, these developments highlight a growing set of technologies for clinical applications, including bedside brain monitoring in neurocritical care. We conclude with practical guidance on detector technologies, gating strategies, system packaging, and briefly discuss interferometric DCS and speckle contrast optical spectroscopy (SCOS) as synergistic extensions for high-resolution and high-coverage imaging.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.08.25329202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous, noninvasive monitoring of cerebral blood flow (CBF) is vital for neurocritical care. Diffuse correlation spectroscopy (DCS) enables assessment of microvascular blood flow by analyzing speckle intensity fluctuations of near-infrared light. In this review, we summarize recent advances in TD-DCS using superconducting nanowire single-photon detectors (SNSPDs) at 1064 nm, as well as complementary developments in high-density CW-DCS systems using single-photon avalanche diode (SPAD) cameras. Time-gated photon detection improves depth sensitivity in TD-DCS, and the use of longer wavelengths provides advantages in tissue penetration, photon throughput, and safety margin under ANSI exposure limits. Clinically feasible SPAD-based implementations, while lacking time-of-flight resolution, enable large signal-to-noise ratio gains via massive pixel averaging and offer a room-temperature, scalable path to high-density optical tissue monitoring. Together, these developments highlight a growing set of technologies for clinical applications, including bedside brain monitoring in neurocritical care. We conclude with practical guidance on detector technologies, gating strategies, system packaging, and briefly discuss interferometric DCS and speckle contrast optical spectroscopy (SCOS) as synergistic extensions for high-resolution and high-coverage imaging.

使用SNSPDs和高密度SPAD相机进行人体光血流监测。
连续和无创监测脑血流量(CBF)对于治疗急性脑损伤至关重要。时域漫射相关光谱(TD-DCS)能够利用弥漫性介质(如活组织)中的飞行时间信息进行深度敏感微血管血流评估。本文介绍了超导纳米线单光子探测器(SNSPDs)和高密度单光子雪崩二极管(SPAD)阵列在TD-DCS中的最新进展。我们利用光子时间门控技术和优化的仪器响应函数,在1064nm波长下提高了信噪比和深度灵敏度。床头(HOB)和压力调制协议的实验结果验证了该系统在隔离深层大脑信号方面的能力。基于spad的探测器与初步的手握和HOB协议的附加评估显示,结果补充了我们的CW-DCS系统。这使得基于spad的方法比传统的CW-DCS系统处于更有利的位置,特别是在信噪比和可扩展性方面。随着未来的增强,如快速时间门控和改进的量子效率,SPAD阵列由于其灵敏度,紧凑性和成本效益的特点,可以弥补在临床环境中实施时域系统的差距。同样,SNSPD阵列可以成为TD-DCS中SPAD阵列的可行替代或补充,特别是在需要接近1064nm性能的深层组织成像中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信