Machine Learning Models Enhance Prediction of Arrhythmogenic Right Ventricular Cardiomyopathy.

Kwaku K Quansah, Sean A Murphy, Esther Kwon, Emma Anderson, Richard T Carrick, Cynthia A James, Hugh Calkins, Chulan Kwon
{"title":"Machine Learning Models Enhance Prediction of Arrhythmogenic Right Ventricular Cardiomyopathy.","authors":"Kwaku K Quansah, Sean A Murphy, Esther Kwon, Emma Anderson, Richard T Carrick, Cynthia A James, Hugh Calkins, Chulan Kwon","doi":"10.1101/2025.06.16.25329706","DOIUrl":null,"url":null,"abstract":"<p><p>Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is a leading contributor to sudden cardiac death worldwide, yet its diagnosis remains complex, expensive and time-consuming. Machine-learning (ML) classifiers offer a practical solution by delivering rapid, scalable predictions that can lessen dependence on expert interpretation and speed clinical decision-making. Here, we benchmarked eight ML algorithms for ARVC detection using area-under-the-curve (AUC) and accuracy as primary metrics. Gradient Boosted Trees outperformed all other models, achieving an accuracy of 94.34% after rigorous cross-validation. These results underscore the promise of Gradient Boosted Trees classifier as an effective decision-support tool within the ARVC diagnostic workflow, with potential to streamline evaluation and improve patient outcomes.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.16.25329706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is a leading contributor to sudden cardiac death worldwide, yet its diagnosis remains complex, expensive and time-consuming. Machine-learning (ML) classifiers offer a practical solution by delivering rapid, scalable predictions that can lessen dependence on expert interpretation and speed clinical decision-making. Here, we benchmarked eight ML algorithms for ARVC detection using area-under-the-curve (AUC) and accuracy as primary metrics. Gradient Boosted Trees outperformed all other models, achieving an accuracy of 94.34% after rigorous cross-validation. These results underscore the promise of Gradient Boosted Trees classifier as an effective decision-support tool within the ARVC diagnostic workflow, with potential to streamline evaluation and improve patient outcomes.

机器学习模型增强对致心律失常右室心肌病的预测。
心律失常性右室心肌病(ARVC)是世界范围内心源性猝死的主要原因,但其诊断仍然复杂、昂贵且耗时。机器学习(ML)分类器通过提供快速、可扩展的预测提供了一种实用的解决方案,可以减少对专家解释的依赖,加快临床决策。在这里,我们以曲线下面积(area-under-the-curve, AUC)和准确性作为主要指标,对8种用于ARVC检测的ML算法进行了基准测试。经过严格的交叉验证,Gradient boosting Trees的准确率达到了94.34%,优于所有其他模型。这些结果强调了梯度增强树分类器作为ARVC诊断工作流程中有效的决策支持工具的前景,具有简化评估和改善患者预后的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信