Diverse Genomes, Shared Health: Insights from a Health System Biobank.

Roni Haas, Michael P Margolis, Angela Wei, Takafumi N Yamaguchi, Jeffrey Feng, Thai Tran, Veronica Tozzo, Katelyn J Queen, Mohammed Faizal Eeman Mootor, Vishakha Patil, Michael E Broudy, Paul Tung, Shafiul Alam, Danielle B Martinez, Yash Patel, Nicole Zeltser, Rupert Hugh-White, Jaron Arbet, Christa Caggiano, Ruhollah Shemirani, Mao Tian, Prapti Thapaliya, Lora Eloyan, Lawrence O Chen, Maryam Ariannejad, Clara Lajonchere, Bogdan Pasaniuc, Alex Bui, Valerie A Arboleda, Timothy S Chang, Noah Zaitlen, Paul T Spellman, Paul C Boutros, Daniel H Geschwind
{"title":"Diverse Genomes, Shared Health: Insights from a Health System Biobank.","authors":"Roni Haas, Michael P Margolis, Angela Wei, Takafumi N Yamaguchi, Jeffrey Feng, Thai Tran, Veronica Tozzo, Katelyn J Queen, Mohammed Faizal Eeman Mootor, Vishakha Patil, Michael E Broudy, Paul Tung, Shafiul Alam, Danielle B Martinez, Yash Patel, Nicole Zeltser, Rupert Hugh-White, Jaron Arbet, Christa Caggiano, Ruhollah Shemirani, Mao Tian, Prapti Thapaliya, Lora Eloyan, Lawrence O Chen, Maryam Ariannejad, Clara Lajonchere, Bogdan Pasaniuc, Alex Bui, Valerie A Arboleda, Timothy S Chang, Noah Zaitlen, Paul T Spellman, Paul C Boutros, Daniel H Geschwind","doi":"10.1101/2025.06.11.25329386","DOIUrl":null,"url":null,"abstract":"<p><p>Coupling genetic profiling with electronic health records from hospital biobanks is a foundational resource for precision medicine. However, lack of ancestral heterogeneity limits discovery and generalizability. We leveraged the UCLA ATLAS Community Health Initiative, a diverse biobank with >35% non-European participants in a single health system, to inform disease prevalence and genetic risk across five continental and 36 fine-scale ancestry groups. Analyzing clinical and genetic data for 93,937 individuals, 61,797 with whole-exome sequencing (WES), we identified novel associations between genetic variants and phenotypes, including <i>STARD7</i> with asthma risk in Mexican Americans and <i>FN3K</i> with intestinal disaccharidase deficiency across Europeans and Admixed Americans. Top decile polygenic scores (PGS) predicted patient status for many common diseases (40% of patients with Type 1 diabetes); an effect markedly diminished in non-Europeans. Exploring the distribution of ACMG ClinGen rare variants across populations demonstrated European bias in curated clinical variants. Mitigating this bias using computationally predicted deleterious variants, we identified new gene-disease associations, including <i>EXOC1L</i> and blood glucose level in East Asians. We identified <i>PTPRU</i> as a modulator of semaglutide's effects on weight loss, and additionally found variability across ancestries and a relationship with type-2-diabetes PGS. We provide an interactive web portal for accessing cross-ancestry associations at atlas-phewas.mednet.ucla.edu. Collectively, our findings support the value of ancestral diversity in advancing precision health across a broad spectrum of populations.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.11.25329386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coupling genetic profiling with electronic health records from hospital biobanks is a foundational resource for precision medicine. However, lack of ancestral heterogeneity limits discovery and generalizability. We leveraged the UCLA ATLAS Community Health Initiative, a diverse biobank with >35% non-European participants in a single health system, to inform disease prevalence and genetic risk across five continental and 36 fine-scale ancestry groups. Analyzing clinical and genetic data for 93,937 individuals, 61,797 with whole-exome sequencing (WES), we identified novel associations between genetic variants and phenotypes, including STARD7 with asthma risk in Mexican Americans and FN3K with intestinal disaccharidase deficiency across Europeans and Admixed Americans. Top decile polygenic scores (PGS) predicted patient status for many common diseases (40% of patients with Type 1 diabetes); an effect markedly diminished in non-Europeans. Exploring the distribution of ACMG ClinGen rare variants across populations demonstrated European bias in curated clinical variants. Mitigating this bias using computationally predicted deleterious variants, we identified new gene-disease associations, including EXOC1L and blood glucose level in East Asians. We identified PTPRU as a modulator of semaglutide's effects on weight loss, and additionally found variability across ancestries and a relationship with type-2-diabetes PGS. We provide an interactive web portal for accessing cross-ancestry associations at atlas-phewas.mednet.ucla.edu. Collectively, our findings support the value of ancestral diversity in advancing precision health across a broad spectrum of populations.

多样化的基因组,共享的健康:来自健康系统生物库的见解。
将基因分析与医院生物银行的电子健康记录相结合是精准医疗的基础资源。然而,缺乏祖先异质性限制了发现和推广。我们利用加州大学洛杉矶分校ATLAS社区健康倡议,一个多样化的生物库,在单一的卫生系统中有bbbb35 %的非欧洲参与者,以了解五大洲和36个精细祖先群体的疾病患病率和遗传风险。研究人员分析了93937人的临床和遗传数据,其中61797人采用全外显子组测序(WES),发现了遗传变异和表型之间的新关联,包括墨西哥裔美国人的STARD7与哮喘风险,以及欧洲和混血儿美国人的FN3K与肠道双糖酶缺乏症。前十分位多基因评分(PGS)预测了许多常见疾病的患者状态(40%的1型糖尿病患者);这种效应在非欧洲人身上明显减弱。对ACMG ClinGen罕见变异在人群中的分布进行探索,结果显示在临床变异中存在欧洲偏倚。利用计算预测的有害变异减轻了这种偏差,我们确定了新的基因与疾病的关联,包括东亚人的EXOC1L和血糖水平。我们确定PTPRU是西马鲁肽对体重减轻作用的调节剂,另外还发现了不同祖先的变异性以及与2型糖尿病PGS的关系。我们在atlas-phewas.mednet.ucla.edu提供了一个访问跨祖先协会的交互式门户网站。总的来说,我们的发现支持了祖先多样性在促进广泛人群精准健康方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信