Cohort-level analysis of human de novo mutations points to drivers of clonal expansion in spermatogonia.

Vladimir Seplyarskiy, Mikhail A Moldovan, Evan Koch, Prathitha Kar, Matthew Dc Neville, Raheleh Rahbari, Shamil Sunyaev
{"title":"Cohort-level analysis of human <i>de novo</i> mutations points to drivers of clonal expansion in spermatogonia.","authors":"Vladimir Seplyarskiy, Mikhail A Moldovan, Evan Koch, Prathitha Kar, Matthew Dc Neville, Raheleh Rahbari, Shamil Sunyaev","doi":"10.1101/2025.01.03.25319979","DOIUrl":null,"url":null,"abstract":"<p><p>In renewing tissues, mutations conferring selective advantage may result in clonal expansions<sup>1-4</sup>. In contrast to somatic tissues, mutations driving clonal expansions in spermatogonia (CES) are also transmitted to the next generation. This results in an effective increase of <i>de novo</i> mutation rate for CES drivers<sup>5-8</sup>. CES was originally discovered through extreme recurrence of <i>de novo</i> mutations causing Apert syndrome<sup>5</sup>. Here, we develop a systematic approach to discover CES drivers as hotspots of human <i>de novo</i> mutation. Our analysis of 54,715 trios ascertained for rare conditions<sup>9-13</sup>, 6,065 control trios<sup>12,14-19</sup>, and population variation from 807,162 mostly healthy individuals<sup>20</sup> identifies genes manifesting rates of <i>de novo</i> mutations inconsistent with plausible models of disease ascertainment. We propose 23 genes hypermutable at loss-of-function (LoF) sites as candidate CES drivers. An additional 17 genes feature hypermutable missense mutations at individual positions, suggesting CES acting through gain-of-function (GoF). Among candidates are 5 of 13 known CES drivers<sup>7,8</sup>, 13 drivers of somatic expansions, and 21 members of major signaling pathways; notably, 17 genes show CES evidence in direct sperm sequencing<sup>21</sup>. CES increases the average mutation rate ~17-fold for LoF genes in both control trios and sperm and ~500-fold for pooled GoF sites in sperm. Positive selection in the male germline elevates the prevalence of genetic disorders and increases polymorphism levels, masking the effect of negative selection in human populations. Despite the excess of mutations in disease cohorts for 19 LoF CES driver candidates, only 9 show clear evidence of disease causality<sup>22</sup>, suggesting that CES may lead to false-positive disease associations.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.03.25319979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In renewing tissues, mutations conferring selective advantage may result in clonal expansions1-4. In contrast to somatic tissues, mutations driving clonal expansions in spermatogonia (CES) are also transmitted to the next generation. This results in an effective increase of de novo mutation rate for CES drivers5-8. CES was originally discovered through extreme recurrence of de novo mutations causing Apert syndrome5. Here, we develop a systematic approach to discover CES drivers as hotspots of human de novo mutation. Our analysis of 54,715 trios ascertained for rare conditions9-13, 6,065 control trios12,14-19, and population variation from 807,162 mostly healthy individuals20 identifies genes manifesting rates of de novo mutations inconsistent with plausible models of disease ascertainment. We propose 23 genes hypermutable at loss-of-function (LoF) sites as candidate CES drivers. An additional 17 genes feature hypermutable missense mutations at individual positions, suggesting CES acting through gain-of-function (GoF). Among candidates are 5 of 13 known CES drivers7,8, 13 drivers of somatic expansions, and 21 members of major signaling pathways; notably, 17 genes show CES evidence in direct sperm sequencing21. CES increases the average mutation rate ~17-fold for LoF genes in both control trios and sperm and ~500-fold for pooled GoF sites in sperm. Positive selection in the male germline elevates the prevalence of genetic disorders and increases polymorphism levels, masking the effect of negative selection in human populations. Despite the excess of mutations in disease cohorts for 19 LoF CES driver candidates, only 9 show clear evidence of disease causality22, suggesting that CES may lead to false-positive disease associations.

人类新生突变的队列水平分析指出了精原细胞克隆扩增的驱动因素。
在组织更新中,具有选择优势的突变可能导致克隆扩增1-4。与体细胞组织不同,驱动精原细胞(CES)克隆扩增的突变也会遗传给下一代。这导致CES驱动器的新生突变率有效增加5-8。CES最初是通过引起Apert综合征的新生突变的极端复发发现的。在这里,我们开发了一种系统的方法来发现作为人类从头突变热点的CES驱动因素。我们分析了54,715个罕见疾病3组(9-13)、6,065个对照3组(12 - 14-19)以及来自807,162个大多数健康个体的群体变异(20),发现了与疾病确定的合理模型不一致的新发突变率基因。我们提出了23个在功能丧失(LoF)位点超可变的基因作为候选的CES驱动因素。另外17个基因在个别位置具有超可变错义突变,表明CES通过功能获得(GoF)起作用。其中包括13个已知的CES驱动因子中的5个、7个、8个、13个体细胞扩张驱动因子和21个主要信号通路成员;值得注意的是,17个基因在直接精子测序中显示出CES证据。CES使对照三人组和精子中LoF基因的平均突变率增加了~ 17倍,精子中合并GoF位点的平均突变率增加了~ 500倍。男性生殖系的正向选择提高了遗传疾病的患病率,增加了多态性水平,掩盖了人类种群中负向选择的影响。尽管在19个LoF CES驱动候选者的疾病队列中存在过多的突变,但只有9个显示出疾病因果关系的明确证据22,这表明CES可能导致假阳性的疾病关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信