The Multiethnic Cohort: A Resource for the study of Genetic and non-Genetic Cancer Risk Across Populations.

David Bogumil, Xin Sheng, Peggy Wan, Lucy Xia, Loreall Pooler, Iona Cheng, Samantha Streicher, Brian Z Huang, Fei Chen, Daniel Stram, Sylvia Shen, Gillian King, Charleston W K Chiang, Chrissie Ongaco, Marcia Adams, Ivy McMullen, Peng Zhang, Hua Ling, Michelle Mawhinney, Kimberly F Doheny, Loïc Le Marchand, Lynne R Wilkens, Christopher A Haiman, David V Conti
{"title":"The Multiethnic Cohort: A Resource for the study of Genetic and non-Genetic Cancer Risk Across Populations.","authors":"David Bogumil, Xin Sheng, Peggy Wan, Lucy Xia, Loreall Pooler, Iona Cheng, Samantha Streicher, Brian Z Huang, Fei Chen, Daniel Stram, Sylvia Shen, Gillian King, Charleston W K Chiang, Chrissie Ongaco, Marcia Adams, Ivy McMullen, Peng Zhang, Hua Ling, Michelle Mawhinney, Kimberly F Doheny, Loïc Le Marchand, Lynne R Wilkens, Christopher A Haiman, David V Conti","doi":"10.1101/2025.06.09.25328993","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The Multiethnic Cohort Study (MEC) is a U.S. prospective cohort of over 215,000 participants, designed to investigate variation in risk factors and disease across diverse racial and ethnic groups. Over 74,000 participants contributed biospecimens for genetic studies. We describe this sub-cohort and demonstrate the types of analyses it enables.</p><p><strong>Methods: </strong>The MEC recruited adults aged 45-75 in California and Hawaii between 1993 and 1996. Cancer diagnoses were identified via state tumor registries. The MEC Genetics Database includes 73,139 participants with germline genotype data. We evaluated genetic similarity, its relationship with self-reported race/ethnicity, and baseline characteristics, including neighborhood socioeconomic status. Using breast, colorectal, and prostate cancer as examples, the database supports multi-ancestry genome-wide association studies (GWAS), evaluation of non-genetic factors, and time-to-event analyses.</p><p><strong>Results: </strong>Participants included 10,962 African Americans, 24,234 Japanese Americans, 17,242 Latinos, 5,488 Native Hawaiians, 14,649 Whites, and 564 other. Principal component analysis revealed substantial diversity in ancestry. Multiethnic GWAS demonstrated effective control of population stratification while replicating many previously discovered variants. Polygenic risk score (PRS) effects varied by racial and ethnic group. Time-to-event analysis showed associations between cancer incidence and neighborhood socioeconomic status, population descriptors, and genetic similarity.</p><p><strong>Discussion: </strong>The MEC Genetics Database enables comprehensive assessment of genetic and non-genetic cancer risk, revealing differences in absolute risk by race and ethnicity. Studying both types of risk factors in diverse and admixed populations is critical for improving risk characterization and reducing disparities. This resource supports future research in polygenic traits, gene-environment interactions, and integrated risk prediction.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.09.25328993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The Multiethnic Cohort Study (MEC) is a U.S. prospective cohort of over 215,000 participants, designed to investigate variation in risk factors and disease across diverse racial and ethnic groups. Over 74,000 participants contributed biospecimens for genetic studies. We describe this sub-cohort and demonstrate the types of analyses it enables.

Methods: The MEC recruited adults aged 45-75 in California and Hawaii between 1993 and 1996. Cancer diagnoses were identified via state tumor registries. The MEC Genetics Database includes 73,139 participants with germline genotype data. We evaluated genetic similarity, its relationship with self-reported race/ethnicity, and baseline characteristics, including neighborhood socioeconomic status. Using breast, colorectal, and prostate cancer as examples, the database supports multi-ancestry genome-wide association studies (GWAS), evaluation of non-genetic factors, and time-to-event analyses.

Results: Participants included 10,962 African Americans, 24,234 Japanese Americans, 17,242 Latinos, 5,488 Native Hawaiians, 14,649 Whites, and 564 other. Principal component analysis revealed substantial diversity in ancestry. Multiethnic GWAS demonstrated effective control of population stratification while replicating many previously discovered variants. Polygenic risk score (PRS) effects varied by racial and ethnic group. Time-to-event analysis showed associations between cancer incidence and neighborhood socioeconomic status, population descriptors, and genetic similarity.

Discussion: The MEC Genetics Database enables comprehensive assessment of genetic and non-genetic cancer risk, revealing differences in absolute risk by race and ethnicity. Studying both types of risk factors in diverse and admixed populations is critical for improving risk characterization and reducing disparities. This resource supports future research in polygenic traits, gene-environment interactions, and integrated risk prediction.

多民族队列:研究人群中遗传和非遗传癌症风险的资源。
多民族队列研究(MEC)是美国一项超过215,000名参与者的前瞻性队列研究,旨在调查不同种族和民族群体的危险因素和疾病的变化。超过74,000名参与者为基因研究提供了生物标本。我们描述了这个亚队列,并演示了它所支持的分析类型。方法:MEC于1993年至1996年在加州和夏威夷招募了45-75岁的成年人。癌症诊断是通过州肿瘤登记处确定的。MEC遗传学数据库包括73,139名具有种系基因型数据的参与者。我们评估了遗传相似性,其与自我报告的种族/民族的关系,以及基线特征,包括社区社会经济地位。以乳腺癌、结直肠癌和前列腺癌为例,该数据库支持多祖先全基因组关联研究(GWAS)、非遗传因素评估和事件时间分析。结果:参与者包括10,962名非裔美国人,24,234名日裔美国人,17,242名拉丁美洲人,5,488名夏威夷原住民,14,649名白人和564名其他人群。主成分分析揭示了祖先的多样性。多民族GWAS在复制许多先前发现的变异的同时,证明了对种群分层的有效控制。多基因风险评分(PRS)效应因种族和民族而异。时间-事件分析显示,癌症发病率与社区社会经济地位、人口描述符和遗传相似性之间存在关联。讨论:MEC遗传学数据库能够全面评估遗传和非遗传癌症风险,揭示种族和民族绝对风险的差异。在不同和混合人群中研究这两种类型的风险因素对于改善风险特征和减少差异至关重要。该资源支持未来在多基因性状、基因-环境相互作用和综合风险预测方面的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信