Bridging the Heterogeneity of Myasthenia Gravis Severity Scores for Digital Twin Development.

Marc Garbey, Quentin Lesport, Henry J Kaminski
{"title":"Bridging the Heterogeneity of Myasthenia Gravis Severity Scores for Digital Twin Development.","authors":"Marc Garbey, Quentin Lesport, Henry J Kaminski","doi":"10.1101/2025.06.13.25329566","DOIUrl":null,"url":null,"abstract":"<p><p>Myasthenia gravis (MG) is a rare autoimmune neuromuscular disease. Clinical trials with rigorously collected data, especially for rare diseases, provide opportunities for mathematical modeling of patient outcomes over time; however, building a larger data set from multiple trials faces the challenge of harmonization of outcome measures. To accurately model MG and predict individual patient trajectories, one requires integrating three primary data types: (i) Laboratory and medication data, (ii) Electronic Health Record (EHR) data (e.g., age, sex, years since diagnosis, BMI), (iii) Disease severity scores. Among these, MG severity scores are crucial for measuring disease progression from the patient's and clinical evaluator's perspectives. However, clinical studies often employ various scoring systems (e.g., ADL, QMG, MG-CE, MGQOL-15), making it challenging to determine the most reliable measure. In this study, we investigate the relationships among clinical outcome measures across multiple clinical studies. Our objective is to develop a robust \"Myasthenia Gravis Portrait\" that can be applied across diverse clinical studies. This standardized portrait will facilitate the creation of a virtual population of digital twins, enabling the application of machine learning techniques to a larger patient population.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.13.25329566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myasthenia gravis (MG) is a rare autoimmune neuromuscular disease. Clinical trials with rigorously collected data, especially for rare diseases, provide opportunities for mathematical modeling of patient outcomes over time; however, building a larger data set from multiple trials faces the challenge of harmonization of outcome measures. To accurately model MG and predict individual patient trajectories, one requires integrating three primary data types: (i) Laboratory and medication data, (ii) Electronic Health Record (EHR) data (e.g., age, sex, years since diagnosis, BMI), (iii) Disease severity scores. Among these, MG severity scores are crucial for measuring disease progression from the patient's and clinical evaluator's perspectives. However, clinical studies often employ various scoring systems (e.g., ADL, QMG, MG-CE, MGQOL-15), making it challenging to determine the most reliable measure. In this study, we investigate the relationships among clinical outcome measures across multiple clinical studies. Our objective is to develop a robust "Myasthenia Gravis Portrait" that can be applied across diverse clinical studies. This standardized portrait will facilitate the creation of a virtual population of digital twins, enabling the application of machine learning techniques to a larger patient population.

数字双胞胎发育中重症肌无力严重程度评分的异质性。
重症肌无力是一种罕见的自身免疫性神经肌肉疾病。具有严格收集数据的临床试验,特别是针对罕见疾病的临床试验,为长期患者预后的数学建模提供了机会;然而,从多个试验中建立更大的数据集面临着结果测量协调的挑战。为了准确地模拟MG并预测个体患者的轨迹,需要整合三种主要数据类型:(i)实验室和药物数据,(ii)电子健康记录(EHR)数据(例如,年龄、性别、诊断后的年数、BMI), (iii)疾病严重程度评分。其中,从患者和临床评估者的角度来看,MG严重程度评分对于衡量疾病进展至关重要。然而,临床研究通常采用各种评分系统(如ADL、QMG、MG-CE、MGQOL-15),这使得确定最可靠的测量方法具有挑战性。在这项研究中,我们调查了多个临床研究中临床结果测量之间的关系。我们的目标是开发一个强大的“重症肌无力画像”,可以应用于不同的临床研究。这种标准化的肖像将促进数字双胞胎虚拟群体的创建,使机器学习技术能够应用于更大的患者群体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信