Decoding the mechanophysiology for inhaled onset of smallpox with model-based implications for mpox spread.

Mohammad Yeasin, Mohammad Mehedi Hasan Akash, Abir Malakar, Azadeh A T Borojeni, Aditya Tummala, Jihong Wu, William D Bennett, Wanda M Bodnar, Julia S Kimbell, Arijit Chakravarty, Julia R Port, Saikat Basu
{"title":"Decoding the mechanophysiology for inhaled onset of smallpox with model-based implications for mpox spread.","authors":"Mohammad Yeasin, Mohammad Mehedi Hasan Akash, Abir Malakar, Azadeh A T Borojeni, Aditya Tummala, Jihong Wu, William D Bennett, Wanda M Bodnar, Julia S Kimbell, Arijit Chakravarty, Julia R Port, Saikat Basu","doi":"10.1101/2025.06.17.25329814","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopoxviruses can transmit via inhalation of virus-laden airborne particulates, with the initial infection triggered along the respiratory pathway. Understanding the flow physics of inhaled aerosols and droplets within the respiratory tract is crucial for improving transmission mitigation strategies and elucidating disease pathology. Here, we introduce an experimentally-validated physiological fluid dynamics model simulating inhaled onset of smallpox caused by the variola virus of Orthopoxvirus genus. Using high-fidelity Large Eddy Simulations, we modeled airflow and particulate motion within anatomical airway domains reconstructed from medical imaging. By integrating these simulations with viral concentration and individual immune factors, we estimated critical exposure durations for infection onset to be between 1-19 hours, aligning with existing smallpox literature. To formalize the broader applicability of this framework, we extended our analysis to mpox virus, a circulating pathogen from same genus. For mpox, the mechanophysiological computations indicate a critical exposure window of 24-40 hours; however, this can vary significantly-from as short as 8 hours to as long as 127 hours-depending on virion concentration fluctuations within inhaled particulates, assuming happenstance of viral evolution. Predictably longer than the critical exposure durations for smallpox, the mpox findings still strongly suggest the possibility for airborne inhaled transmission during prolonged proximity.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.17.25329814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthopoxviruses can transmit via inhalation of virus-laden airborne particulates, with the initial infection triggered along the respiratory pathway. Understanding the flow physics of inhaled aerosols and droplets within the respiratory tract is crucial for improving transmission mitigation strategies and elucidating disease pathology. Here, we introduce an experimentally-validated physiological fluid dynamics model simulating inhaled onset of smallpox caused by the variola virus of Orthopoxvirus genus. Using high-fidelity Large Eddy Simulations, we modeled airflow and particulate motion within anatomical airway domains reconstructed from medical imaging. By integrating these simulations with viral concentration and individual immune factors, we estimated critical exposure durations for infection onset to be between 1-19 hours, aligning with existing smallpox literature. To formalize the broader applicability of this framework, we extended our analysis to mpox virus, a circulating pathogen from same genus. For mpox, the mechanophysiological computations indicate a critical exposure window of 24-40 hours; however, this can vary significantly-from as short as 8 hours to as long as 127 hours-depending on virion concentration fluctuations within inhaled particulates, assuming happenstance of viral evolution. Predictably longer than the critical exposure durations for smallpox, the mpox findings still strongly suggest the possibility for airborne inhaled transmission during prolonged proximity.

破解吸入性天花发病的机械生理学与基于模型的m痘传播的含义。
正痘病毒可通过吸入携带病毒的空气微粒传播,最初的感染是沿着呼吸道引发的。了解吸入的气溶胶和飞沫在呼吸道内的流动物理对于改善传播缓解策略和阐明疾病病理至关重要。在这里,我们引入了一个实验验证的生理流体动力学模型,模拟由正痘病毒属的天花病毒引起的吸入性天花发病。利用高保真大涡模拟,我们模拟了从医学成像重建的解剖气道域中的气流和颗粒运动。通过将这些模拟与病毒浓度和个体免疫因素相结合,我们估计感染发生的临界暴露时间在1 - 19小时之间,与现有的天花文献一致。为了使这一框架更广泛的适用性形式化,我们将分析扩展到m痘病毒,一种来自同一属的流行病原体。对于mpox,机械生理学计算表明关键暴露窗口为24 - 40小时;然而,根据吸入颗粒中病毒粒子浓度的波动,假设病毒进化的偶然性,这可能会有很大的变化——从短至8小时到长至127小时。可预见的是,mpox比天花的临界暴露时间更长,但研究结果仍然强烈表明,在长时间的接触中,mpox有可能通过空气吸入传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信