AI-based identification of patients who benefit from revascularization: a multicenter study.

Wenhao Zhang, Robert Jh Miller, Krishna Patel, Aakash D Shanbhag, Joanna X Liang, Mark Lemley, Giselle Ramirez, Valerie Builoff, Jirong Yi, Jianhang Zhou, Paul Kavanagh, Wanda Acampa, Timothy M Bateman, Marcelo Di Carli, Sharmila Dorbala, Andrew J Einstein, Mathews B Fish, M Timothy Hauser, Terrence D Ruddy, Philipp A Kaufmann, Edward J Miller, Tali Sharir, Monica Martins, Julian Halcox, Panithaya Chareonthaitawee, Damini Dey, Daniel S Berman, Piotr J Slomka
{"title":"AI-based identification of patients who benefit from revascularization: a multicenter study.","authors":"Wenhao Zhang, Robert Jh Miller, Krishna Patel, Aakash D Shanbhag, Joanna X Liang, Mark Lemley, Giselle Ramirez, Valerie Builoff, Jirong Yi, Jianhang Zhou, Paul Kavanagh, Wanda Acampa, Timothy M Bateman, Marcelo Di Carli, Sharmila Dorbala, Andrew J Einstein, Mathews B Fish, M Timothy Hauser, Terrence D Ruddy, Philipp A Kaufmann, Edward J Miller, Tali Sharir, Monica Martins, Julian Halcox, Panithaya Chareonthaitawee, Damini Dey, Daniel S Berman, Piotr J Slomka","doi":"10.1101/2025.06.11.25329295","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Revascularization in stable coronary artery disease often relies on ischemia severity, but we introduce an AI-driven approach that uses clinical and imaging data to estimate individualized treatment effects and guide personalized decisions.</p><p><strong>Methods: </strong>Using a large, international registry from 13 centers, we developed an AI model to estimate individual treatment effects by simulating outcomes under alternative therapeutic strategies. The model was trained on an internal cohort constructed using 1:1 propensity score matching to emulate randomized controlled trials (RCTs), creating balanced patient pairs in which only the treatment strategy-early revascularization (defined as any procedure within 90 days of MPI) versus medical therapy-differed. This design allowed the model to estimate individualized treatment effects, forming the basis for counterfactual reasoning at the patient level. We then derived the AI-REVASC score, which quantifies the potential benefit, for each patient, of early revascularization. The score was validated in the held-out testing cohort using Cox regression.</p><p><strong>Results: </strong>Of 45,252 patients, 19,935 (44.1%) were female, median age 65 (IQR: 57-73). During a median follow-up of 3.6 years (IQR: 2.7-4.9), 4,323 (9.6%) experienced MI or death. The AI model identified a group (n=1,335, 5.9%) that benefits from early revascularization with a propensity-adjusted hazard ratio of 0.50 (95% CI: 0.25-1.00). Patients identified for early revascularization had higher prevalence of hypertension, diabetes, dyslipidemia, and lower LVEF.</p><p><strong>Conclusions: </strong>This study pioneers a scalable, data-driven approach that emulates randomized trials using retrospective data. The AI-REVASC score enables precision revascularization decisions where guidelines and RCTs fall short.</p>","PeriodicalId":94281,"journal":{"name":"medRxiv : the preprint server for health sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv : the preprint server for health sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.06.11.25329295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims: Revascularization in stable coronary artery disease often relies on ischemia severity, but we introduce an AI-driven approach that uses clinical and imaging data to estimate individualized treatment effects and guide personalized decisions.

Methods: Using a large, international registry from 13 centers, we developed an AI model to estimate individual treatment effects by simulating outcomes under alternative therapeutic strategies. The model was trained on an internal cohort constructed using 1:1 propensity score matching to emulate randomized controlled trials (RCTs), creating balanced patient pairs in which only the treatment strategy-early revascularization (defined as any procedure within 90 days of MPI) versus medical therapy-differed. This design allowed the model to estimate individualized treatment effects, forming the basis for counterfactual reasoning at the patient level. We then derived the AI-REVASC score, which quantifies the potential benefit, for each patient, of early revascularization. The score was validated in the held-out testing cohort using Cox regression.

Results: Of 45,252 patients, 19,935 (44.1%) were female, median age 65 (IQR: 57-73). During a median follow-up of 3.6 years (IQR: 2.7-4.9), 4,323 (9.6%) experienced MI or death. The AI model identified a group (n=1,335, 5.9%) that benefits from early revascularization with a propensity-adjusted hazard ratio of 0.50 (95% CI: 0.25-1.00). Patients identified for early revascularization had higher prevalence of hypertension, diabetes, dyslipidemia, and lower LVEF.

Conclusions: This study pioneers a scalable, data-driven approach that emulates randomized trials using retrospective data. The AI-REVASC score enables precision revascularization decisions where guidelines and RCTs fall short.

基于人工智能识别受益于血运重建的患者:一项多中心研究。
背景和目的:稳定性冠状动脉疾病的血运重建通常依赖于缺血严重程度,但我们引入了一种人工智能驱动的方法,该方法使用临床和成像数据来评估个性化治疗效果并指导个性化决策。方法:使用来自13个中心的大型国际注册表,我们开发了一个人工智能模型,通过模拟替代治疗策略下的结果来估计个体治疗效果。该模型在一个内部队列中进行训练,使用1:1倾向评分匹配来模拟随机对照试验(rct),创建平衡的患者对,其中只有治疗策略-早期血运重建术(定义为MPI后90天内的任何手术)与药物治疗不同。这种设计允许模型估计个体化治疗效果,形成患者层面反事实推理的基础。然后,我们得出AI-REVASC评分,量化每位患者早期血运重建的潜在益处。使用Cox回归在hold -out测试队列中验证得分。结果:45252例患者中,女性19935例(44.1%),中位年龄65岁(IQR: 57-73)。在中位随访3.6年(IQR: 2.7-4.9)期间,4323例(9.6%)发生心肌梗死或死亡。人工智能模型确定了一组(n= 1335, 5.9%)受益于早期血运重建,倾向调整风险比为0.50 (95% CI: 0.25-1.00)。早期血运重建的患者有较高的高血压、糖尿病、血脂异常和低LVEF患病率。结论:本研究开创了一种可扩展的、数据驱动的方法,采用回顾性数据模拟随机试验。AI-REVASC评分可以在指南和随机对照试验不足的情况下做出精确的血运重建决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信