Application of Large Language Models in Traditional Chinese Medicine: A State-of-the-Art Review.

IF 5.5
The American journal of Chinese medicine Pub Date : 2025-01-01 Epub Date: 2025-06-18 DOI:10.1142/S0192415X25500375
Dilireba Shataer, Siyu Cao, Xin Liu, Kailibinuer Aierken, Pronaya Bhattacharya, Anurag Sinha, Haipeng Liu
{"title":"Application of Large Language Models in Traditional Chinese Medicine: A State-of-the-Art Review.","authors":"Dilireba Shataer, Siyu Cao, Xin Liu, Kailibinuer Aierken, Pronaya Bhattacharya, Anurag Sinha, Haipeng Liu","doi":"10.1142/S0192415X25500375","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) are reshaping the landscape of Traditional Chinese Medicine (TCM). This review covers the latest applications of LLMs in TCM, including literature analysis, data mining, TCM knowledge management, diagnosis simulation and clinical decision making. LLMs can analyze large quantities of TCM literature and medical records to extract critical information, classify prescriptions, and build TCM knowledge maps to help researchers quickly grasp state-of-the-art and future research trends. LLMs can provide initial diagnostic recommendations by analyzing textual information such as a patient's symptom description and medical history, enabling the optimization of TCM therapy and the training of TCM practitioners. Compared with traditional tools, LLMs can significantly improve the efficiency and accuracy of bibliographic analysis and TCM prescription classification, and offer new potential for data-driven standardized TCM diagnosis. However, challenges remain, including the standardization of TCM terminology and data formats, integration of different data sources, timely knowledge updates, and the interpretability and credibility of results generated by LLMs. Future research on standardized templates for patient symptom description, multimodal data fusion techniques, and real-time knowledge update systems is warranted to improve the transparency and interpretability of LLMs. This review highlights the potential of LLMs to modernize TCM research and practice, providing an up-to-date reference for data scientists, biomedical engineers, and TCM practitioners.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":"53 4","pages":"973-997"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X25500375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) are reshaping the landscape of Traditional Chinese Medicine (TCM). This review covers the latest applications of LLMs in TCM, including literature analysis, data mining, TCM knowledge management, diagnosis simulation and clinical decision making. LLMs can analyze large quantities of TCM literature and medical records to extract critical information, classify prescriptions, and build TCM knowledge maps to help researchers quickly grasp state-of-the-art and future research trends. LLMs can provide initial diagnostic recommendations by analyzing textual information such as a patient's symptom description and medical history, enabling the optimization of TCM therapy and the training of TCM practitioners. Compared with traditional tools, LLMs can significantly improve the efficiency and accuracy of bibliographic analysis and TCM prescription classification, and offer new potential for data-driven standardized TCM diagnosis. However, challenges remain, including the standardization of TCM terminology and data formats, integration of different data sources, timely knowledge updates, and the interpretability and credibility of results generated by LLMs. Future research on standardized templates for patient symptom description, multimodal data fusion techniques, and real-time knowledge update systems is warranted to improve the transparency and interpretability of LLMs. This review highlights the potential of LLMs to modernize TCM research and practice, providing an up-to-date reference for data scientists, biomedical engineers, and TCM practitioners.

大语言模型在中医研究中的应用综述
大型语言模型(llm)正在重塑中医(TCM)的格局。本文综述了法学硕士在中医领域的最新应用,包括文献分析、数据挖掘、中医知识管理、诊断模拟和临床决策等。法学硕士可以分析大量的中医文献和医疗记录,提取关键信息,对处方进行分类,并构建中医知识图谱,帮助研究人员快速掌握最新和未来的研究趋势。llm可以通过分析患者的症状描述和病史等文本信息提供初步诊断建议,从而优化中医治疗和培训中医医生。与传统工具相比,llm可以显著提高文献分析和中药处方分类的效率和准确性,为数据驱动的标准化中医诊断提供新的潜力。然而,挑战依然存在,包括中医术语和数据格式的标准化,不同数据源的整合,知识的及时更新,以及法学硕士产生的结果的可解释性和可信度。未来有必要对患者症状描述的标准化模板、多模态数据融合技术和实时知识更新系统进行研究,以提高llm的透明度和可解释性。这篇综述强调了法学硕士现代化中医研究和实践的潜力,为数据科学家、生物医学工程师和中医从业者提供了最新的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信