Predefined-time adaptive learning control of nonlinear strict-feedback systems via dynamic regressor extension and mixing

IF 6.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zhonghua Wu , Kuncheng Ma , Junkang Ni
{"title":"Predefined-time adaptive learning control of nonlinear strict-feedback systems via dynamic regressor extension and mixing","authors":"Zhonghua Wu ,&nbsp;Kuncheng Ma ,&nbsp;Junkang Ni","doi":"10.1016/j.isatra.2025.06.016","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a parameter identification algorithm and a novel adaptive tracking control strategy for a specific group of nonlinear strict-feedback systems incorporating the concept of predefined time under model uncertainties. A three-layer transformation-based parameter estimation method with predefined-time convergence properties<span><span> is proposed to relax the strict persistent excitation condition<span> imposed by conventional approaches. The singular terms that may occur in traditional backstepping design procedures are avoided by using a </span></span>hyperbolic tangent function<span> to design new control laws and filters. Composite learning control approach<span> that incorporates the algorithm for parameter identification into the framework for adaptive dynamic surface control<span> can achieve error convergence within a practical predefined time. By using Lyapunov analysis, the semi-global uniformly predefined-time boundedness for the closed-loop dynamics is demonstrated. Numerical experiments demonstrate the viability of developed control scheme.</span></span></span></span></div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"165 ","pages":"Pages 209-221"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825003143","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a parameter identification algorithm and a novel adaptive tracking control strategy for a specific group of nonlinear strict-feedback systems incorporating the concept of predefined time under model uncertainties. A three-layer transformation-based parameter estimation method with predefined-time convergence properties is proposed to relax the strict persistent excitation condition imposed by conventional approaches. The singular terms that may occur in traditional backstepping design procedures are avoided by using a hyperbolic tangent function to design new control laws and filters. Composite learning control approach that incorporates the algorithm for parameter identification into the framework for adaptive dynamic surface control can achieve error convergence within a practical predefined time. By using Lyapunov analysis, the semi-global uniformly predefined-time boundedness for the closed-loop dynamics is demonstrated. Numerical experiments demonstrate the viability of developed control scheme.
基于动态回归扩展和混合的非线性严格反馈系统的自适应学习控制。
针对模型不确定情况下的一类非线性严格反馈系统,提出了一种包含预定义时间概念的参数辨识算法和一种新的自适应跟踪控制策略。提出了一种基于三层变换的参数估计方法,该方法具有预定义时间收敛性,可以缓解传统方法所施加的严格的持续激励条件。利用双曲正切函数设计新的控制律和滤波器,避免了传统反推设计过程中可能出现的奇异项。将参数辨识算法纳入自适应动态曲面控制框架的复合学习控制方法可以在实际的预定义时间内实现误差收敛。利用李雅普诺夫分析,证明了闭环动力学的半全局一致预定义时间有界性。数值实验证明了所提出的控制方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信