Normalization strategies in neonatal steroid metabolomics: a comparative analysis of probabilistic quotient and peer group approaches.

Miłosz Lorek, Teresa Joanna Stradomska, Anna Siejka, Janusz Fuchs, Dominika Januś, Aneta Gawlik-Starzyk
{"title":"Normalization strategies in neonatal steroid metabolomics: a comparative analysis of probabilistic quotient and peer group approaches.","authors":"Miłosz Lorek, Teresa Joanna Stradomska, Anna Siejka, Janusz Fuchs, Dominika Januś, Aneta Gawlik-Starzyk","doi":"10.5603/ep.106090","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Steroid metabolomics in neonatal populations is challenged by considerable physiological heterogeneity and technical variability, which complicate the interpretation and comparability of metabolite profiles. Effective normalization strategies are essential to ensure accurate data analysis in this context.</p><p><strong>Material and methods: </strong>We analyzed 24-hour urinary steroid profiles in a cohort of 50 neonates (including very preterm, late preterm, and full-term infants) using gas chromatography-mass spectrometry. Two normalization techniques were compared: probabilistic quotient normalization (PQN) and peer group normalization (PGN). Normalization performance was assessed via distribution metrics, correlation with anthropometric variables, and principal component analysis (PCA).</p><p><strong>Results: </strong>PGN achieved superior distributional normalization, with 27 of 30 metabolites conforming to normality assumptions, compared to 21 using PQN. PGN also eliminated all significant correlations between steroid levels and anthropometric parameters, indicating effective reduction of physiological confounding. In contrast, PQN partially mitigated such associations but was less robust in handling high-abundance metabolites. PCA confirmed improved sample dispersion and group separation after normalization, with method-dependent differences in Scores Plot.</p><p><strong>Conclusions: </strong>Peer group normalization is a sophisticated approach to reducing physiological variability in neonatal steroid profiling. These observations lend further credence to PGN as a promising strategy for standardizing steroid metabolomics in the field of neonatology. Nevertheless, further validation is necessary to substantiate these findings.</p>","PeriodicalId":93990,"journal":{"name":"Endokrynologia Polska","volume":"76 3","pages":"331-338"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endokrynologia Polska","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5603/ep.106090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Steroid metabolomics in neonatal populations is challenged by considerable physiological heterogeneity and technical variability, which complicate the interpretation and comparability of metabolite profiles. Effective normalization strategies are essential to ensure accurate data analysis in this context.

Material and methods: We analyzed 24-hour urinary steroid profiles in a cohort of 50 neonates (including very preterm, late preterm, and full-term infants) using gas chromatography-mass spectrometry. Two normalization techniques were compared: probabilistic quotient normalization (PQN) and peer group normalization (PGN). Normalization performance was assessed via distribution metrics, correlation with anthropometric variables, and principal component analysis (PCA).

Results: PGN achieved superior distributional normalization, with 27 of 30 metabolites conforming to normality assumptions, compared to 21 using PQN. PGN also eliminated all significant correlations between steroid levels and anthropometric parameters, indicating effective reduction of physiological confounding. In contrast, PQN partially mitigated such associations but was less robust in handling high-abundance metabolites. PCA confirmed improved sample dispersion and group separation after normalization, with method-dependent differences in Scores Plot.

Conclusions: Peer group normalization is a sophisticated approach to reducing physiological variability in neonatal steroid profiling. These observations lend further credence to PGN as a promising strategy for standardizing steroid metabolomics in the field of neonatology. Nevertheless, further validation is necessary to substantiate these findings.

新生儿类固醇代谢组学正常化策略:概率商和同伴组方法的比较分析。
新生儿群体中的类固醇代谢组学受到相当大的生理异质性和技术可变性的挑战,这使得代谢物谱的解释和可比性变得复杂。有效的规范化策略对于确保在这种情况下进行准确的数据分析至关重要。材料和方法:我们使用气相色谱-质谱法分析了50名新生儿(包括极早产儿、晚期早产儿和足月婴儿)24小时尿液类固醇谱。比较了两种归一化技术:概率商归一化(PQN)和对等群归一化(PGN)。通过分布指标、与人体测量变量的相关性和主成分分析(PCA)来评估归一化效果。结果:PGN实现了更好的分布归一化,30种代谢物中有27种符合正态性假设,而使用PQN的有21种。PGN还消除了类固醇水平与人体测量参数之间的所有显著相关性,表明有效减少了生理混淆。相比之下,PQN部分减轻了这种关联,但在处理高丰度代谢物方面不太稳健。PCA证实归一化后的样本离散度和组分离有所改善,得分图中有方法相关的差异。结论:同侪组标准化是一种复杂的方法,以减少新生儿类固醇谱的生理变异性。这些观察结果进一步证明了PGN是标准化新生儿领域类固醇代谢组学的一种有前途的策略。然而,需要进一步的验证来证实这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信