Molecular mechanisms associated with the interaction of external electromagnetic fields in protein dynamics and aggregation: a focus on amyloid-βpeptide.

IF 5 Q1 ENGINEERING, BIOMEDICAL
Maldonado-Moreles Alejandro, Bonilla-Jaime Herlinda, Diana I Aparicio-Bautista, Mondragón-Rodríguez Siddhartha, Michael Overduin, Gustavo Basurto-Islas
{"title":"Molecular mechanisms associated with the interaction of external electromagnetic fields in protein dynamics and aggregation: a focus on amyloid-<i>β</i>peptide.","authors":"Maldonado-Moreles Alejandro, Bonilla-Jaime Herlinda, Diana I Aparicio-Bautista, Mondragón-Rodríguez Siddhartha, Michael Overduin, Gustavo Basurto-Islas","doi":"10.1088/2516-1091/adea02","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial stimulation has emerged as a non-invasive treatment that applies electrical currents and magnetic fields to regulate brain functions. Previous studies have shown that magnetic stimulation modulates the dynamics of charged molecules in biological systems. In some pathologies, once the electrical or magnetic field is applied directly to subjects, it can interact with, and alter, abnormally folded proteins, including amyloid-<i>β</i>peptides and their aggregates, reducing cognitive impairments. While our understanding of the molecular mechanisms underlying the interaction between amyloid-<i>β</i>peptide and the physical forces generated by electrical or magnetic stimulation remains unclear, observations show that these stimuli exert attractive and repulsive forces while interacting with the charged groups of peptide side chains as well as lipids. These interactions influence hydrophobic packing and secondary structure, ultimately inducing alterations in aggregation kinetics. The study of structural models of amyloidogenic proteins aids in understanding the mechanisms involved in the protein aggregation process and suggests possible therapeutic applications. This review examines proposed molecular mechanisms to explain the modulatory effects of external electromagnetic fields on the dynamics of proteins and their complexes that regulate pathological processes associated with amyloid-<i>β</i>peptide fibrillation.</p>","PeriodicalId":74582,"journal":{"name":"Progress in biomedical engineering (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in biomedical engineering (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1091/adea02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transcranial stimulation has emerged as a non-invasive treatment that applies electrical currents and magnetic fields to regulate brain functions. Previous studies have shown that magnetic stimulation modulates the dynamics of charged molecules in biological systems. In some pathologies, once the electrical or magnetic field is applied directly to subjects, it can interact with, and alter, abnormally folded proteins, including amyloid-βpeptides and their aggregates, reducing cognitive impairments. While our understanding of the molecular mechanisms underlying the interaction between amyloid-βpeptide and the physical forces generated by electrical or magnetic stimulation remains unclear, observations show that these stimuli exert attractive and repulsive forces while interacting with the charged groups of peptide side chains as well as lipids. These interactions influence hydrophobic packing and secondary structure, ultimately inducing alterations in aggregation kinetics. The study of structural models of amyloidogenic proteins aids in understanding the mechanisms involved in the protein aggregation process and suggests possible therapeutic applications. This review examines proposed molecular mechanisms to explain the modulatory effects of external electromagnetic fields on the dynamics of proteins and their complexes that regulate pathological processes associated with amyloid-βpeptide fibrillation.

外部电磁场在蛋白质动力学和聚集中的相互作用的分子机制:以淀粉样蛋白-β肽为重点。
当前位置经颅刺激已经成为一种非侵入性的治疗方法,它利用电流和磁场来调节大脑功能。以前的研究表明,磁刺激调节生物系统中带电分子的动力学。在某些疾病中,一旦电场或磁场直接作用于受试者,它可以与异常折叠的蛋白质相互作用并改变,包括淀粉样蛋白-β肽及其聚集体,从而减少认知障碍。虽然我们对淀粉样蛋白-β肽与电或磁刺激产生的物理力之间相互作用的分子机制的理解尚不清楚,但观察表明,这些刺激在与肽侧链的带电基团以及脂质相互作用时施加吸引力和排斥力。这些相互作用影响疏水堆积和二级结构,最终诱导聚集动力学的改变。淀粉样蛋白结构模型的研究有助于理解蛋白质聚集过程的机制,并提出可能的治疗应用。本文综述了提出的分子机制,以解释外部电磁场对蛋白质及其复合物的动力学调节作用,这些蛋白质及其复合物调节淀粉样蛋白-β肽颤动相关的病理过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信