Deep learning with ensemble-based hybrid AI model for bipolar and unipolar depression detection using demographic and behavioral based on time-series data.

IF 8.3 2区 医学 Q1 Medicine
Dialogues in Clinical Neuroscience Pub Date : 2025-12-01 Epub Date: 2025-06-30 DOI:10.1080/19585969.2025.2524337
Naga Raju Kanchapogu, Sachi Nandan Mohanty
{"title":"Deep learning with ensemble-based hybrid AI model for bipolar and unipolar depression detection using demographic and behavioral based on time-series data.","authors":"Naga Raju Kanchapogu, Sachi Nandan Mohanty","doi":"10.1080/19585969.2025.2524337","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Depression, including Bipolar and Unipolar types, is a widespread mental health issue. Conventional diagnostic methods rely on subjective assessments, leading to possible underreporting and bias. Machine learning (ML) and deep learning (DL) offer automated approaches to detect depression using behavioral and demographic data.</p><p><strong>Methods: </strong>This study proposes a hybrid AI framework combining structured demographic features with synthetic actigraph time-series data. Demographic data is modeled using an XGBoost ensemble, while temporal data is analyzed through a deep convolutional neural network (CNN). The training pipeline includes stratified k-fold cross-validation, hyperparameter tuning, and statistical testing. Model explainability is enhanced using SHAP (XGBoost) and Grad-CAM (CNN).</p><p><strong>Results: </strong>The hybrid model demonstrated strong classification performance across metrics like accuracy, sensitivity, and specificity. Integrating temporal and static features improved prediction of Bipolar and Unipolar Depression. Interpretability tools revealed key features and time patterns influencing predictions.</p><p><strong>Conclusions: </strong>This work introduces a robust and interpretable framework for depression classification using synthetic multimodal data. While not clinically validated, the model serves as a methodological foundation for future research with real-world datasets.</p>","PeriodicalId":54343,"journal":{"name":"Dialogues in Clinical Neuroscience","volume":"27 1","pages":"16-35"},"PeriodicalIF":8.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12210415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19585969.2025.2524337","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Depression, including Bipolar and Unipolar types, is a widespread mental health issue. Conventional diagnostic methods rely on subjective assessments, leading to possible underreporting and bias. Machine learning (ML) and deep learning (DL) offer automated approaches to detect depression using behavioral and demographic data.

Methods: This study proposes a hybrid AI framework combining structured demographic features with synthetic actigraph time-series data. Demographic data is modeled using an XGBoost ensemble, while temporal data is analyzed through a deep convolutional neural network (CNN). The training pipeline includes stratified k-fold cross-validation, hyperparameter tuning, and statistical testing. Model explainability is enhanced using SHAP (XGBoost) and Grad-CAM (CNN).

Results: The hybrid model demonstrated strong classification performance across metrics like accuracy, sensitivity, and specificity. Integrating temporal and static features improved prediction of Bipolar and Unipolar Depression. Interpretability tools revealed key features and time patterns influencing predictions.

Conclusions: This work introduces a robust and interpretable framework for depression classification using synthetic multimodal data. While not clinically validated, the model serves as a methodological foundation for future research with real-world datasets.

基于时间序列数据的人口统计和行为的基于集成的混合AI模型的深度学习双相和单相抑郁症检测。
背景:抑郁症,包括双相和单相抑郁症,是一种广泛存在的心理健康问题。传统的诊断方法依赖于主观评估,可能导致少报和偏倚。机器学习(ML)和深度学习(DL)提供了使用行为和人口统计数据自动检测抑郁症的方法。方法:本研究提出了一种结合结构化人口统计特征和合成活动记录时间序列数据的混合AI框架。人口统计数据使用XGBoost集成建模,而时间数据通过深度卷积神经网络(CNN)进行分析。训练管道包括分层k-fold交叉验证,超参数调优和统计测试。使用SHAP (XGBoost)和Grad-CAM (CNN)增强了模型的可解释性。结果:混合模型在准确性、敏感性和特异性等指标上表现出很强的分类性能。整合时间和静态特征改善双相和单相抑郁症的预测。可解释性工具揭示了影响预测的关键特征和时间模式。结论:这项工作引入了一个强大的和可解释的框架,抑郁症分类使用合成的多模态数据。虽然没有经过临床验证,但该模型可以作为未来研究真实世界数据集的方法学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dialogues in Clinical Neuroscience
Dialogues in Clinical Neuroscience Medicine-Psychiatry and Mental Health
CiteScore
19.30
自引率
1.20%
发文量
1
期刊介绍: Dialogues in Clinical Neuroscience (DCNS) endeavors to bridge the gap between clinical neuropsychiatry and the neurosciences by offering state-of-the-art information and original insights into pertinent clinical, biological, and therapeutic aspects. As an open access journal, DCNS ensures accessibility to its content for all interested parties. Each issue is curated to include expert reviews, original articles, and brief reports, carefully selected to offer a comprehensive understanding of the evolving landscape in clinical neuroscience. Join us in advancing knowledge and fostering dialogue in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信