{"title":"Human Embryo Quality Assessment with Deep Learning Models.","authors":"Maryam Kalatehjari, Younes Ghasemi, Shaghayegh Mahmoudiandehkordi, Fatemeh Afrazeh, Hossein Abbasi, Fariba Ghasemi","doi":"10.1007/s13224-025-02109-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Embryo quality assessment plays a pivotal role in assisted reproductive technology (ART) for selecting viable embryos for implantation. Accurate evaluation is essential for improving success rates in fertility treatments. Traditional assessment methods rely on subjective visual grading by embryologists, which can lead to inconsistencies. The application of deep learning in this domain offers the potential for objective and reproducible assessments.</p><p><strong>Materials and methods: </strong>This study investigates the use of deep learning models to classify embryo images as good or not good at the day-3 and day-5 stages. A dataset obtained from Hung Vuong Hospital in Ho Chi Minh City was used to train and evaluate four convolutional neural network (CNN) architectures: VGG-19, ResNet-50, InceptionV3, and EfficientNetV2. Performance metrics, including accuracy, precision, and recall, were used to assess model effectiveness.</p><p><strong>Results: </strong>Among the tested models, EfficientNetV2 demonstrated superior performance, achieving an accuracy of 95.26%, a precision of 96.30%, and a recall of 97.25%. These results indicate that deep learning models, particularly EfficientNetV2, can provide highly accurate and consistent assessments of embryo quality.</p><p><strong>Conclusion: </strong>The high classification accuracy of EfficientNetV2 underscores its potential as a valuable tool for fertility specialists. By offering objective and consistent evaluations, this approach can enhance fertility treatment efficiency and support prospective parents in their reproductive journey.</p>","PeriodicalId":51563,"journal":{"name":"Journal of Obstetrics and Gynecology of India","volume":"75 3","pages":"227-232"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12205116/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Obstetrics and Gynecology of India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13224-025-02109-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Embryo quality assessment plays a pivotal role in assisted reproductive technology (ART) for selecting viable embryos for implantation. Accurate evaluation is essential for improving success rates in fertility treatments. Traditional assessment methods rely on subjective visual grading by embryologists, which can lead to inconsistencies. The application of deep learning in this domain offers the potential for objective and reproducible assessments.
Materials and methods: This study investigates the use of deep learning models to classify embryo images as good or not good at the day-3 and day-5 stages. A dataset obtained from Hung Vuong Hospital in Ho Chi Minh City was used to train and evaluate four convolutional neural network (CNN) architectures: VGG-19, ResNet-50, InceptionV3, and EfficientNetV2. Performance metrics, including accuracy, precision, and recall, were used to assess model effectiveness.
Results: Among the tested models, EfficientNetV2 demonstrated superior performance, achieving an accuracy of 95.26%, a precision of 96.30%, and a recall of 97.25%. These results indicate that deep learning models, particularly EfficientNetV2, can provide highly accurate and consistent assessments of embryo quality.
Conclusion: The high classification accuracy of EfficientNetV2 underscores its potential as a valuable tool for fertility specialists. By offering objective and consistent evaluations, this approach can enhance fertility treatment efficiency and support prospective parents in their reproductive journey.
期刊介绍:
Journal of Obstetrics and Gynecology of India (JOGI) is the official journal of the Federation of Obstetrics and Gynecology Societies of India (FOGSI). This is a peer- reviewed journal and features articles pertaining to the field of obstetrics and gynecology. The Journal is published six times a year on a bimonthly basis. Articles contributed by clinicians involved in patient care and research, and basic science researchers are considered. It publishes clinical and basic research of all aspects of obstetrics and gynecology, community obstetrics and family welfare and subspecialty subjects including gynecological endoscopy, infertility, oncology and ultrasonography, provided they have scientific merit and represent an important advance in knowledge. The journal believes in diversity and welcomes and encourages relevant contributions from world over. The types of articles published are: · Original Article· Case Report · Instrumentation and Techniques · Short Commentary · Correspondence (Letter to the Editor) · Pictorial Essay