Ya-ting Ai , Shi Zhou , Ming Wang , Tao-yun Zheng , Hui Hu , Yun-cui Wang , Yu-can Li , Xiao-tong Wang , Peng-jun Zhou
{"title":"Development of a machine learning-based risk prediction model for mild cognitive impairment with spleen-kidney deficiency syndrome in the elderly","authors":"Ya-ting Ai , Shi Zhou , Ming Wang , Tao-yun Zheng , Hui Hu , Yun-cui Wang , Yu-can Li , Xiao-tong Wang , Peng-jun Zhou","doi":"10.1016/j.joim.2025.06.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>As an age-related neurodegenerative disease, the prevalence of mild cognitive impairment (MCI) increases with age. Within the framework of traditional Chinese medicine, spleen-kidney deficiency syndrome (SKDS) is recognized as the most frequent MCI subtype. Due to the covert and gradual onset of MCI, in community settings it poses a significant challenge for patients and their families to discern between typical aging and pathological changes. There exists an urgent need to devise a preliminary diagnostic tool designed for community-residing older adults with MCI attributed to SKDS (MCI-SKDS).</div></div><div><h3>Methods</h3><div>This investigation enrolled 312 elderly individuals diagnosed with MCI, who were randomly distributed into training and test datasets at a 3:1 ratio. Five machine learning methods, including logistic regression (LR), decision tree (DT), naive Bayes (NB), support vector machine (SVM), and gradient boosting (GB), were used to build a diagnostic prediction model for MCI-SKDS. Accuracy, sensitivity, specificity, precision, F1 score, and area under the curve were used to evaluate model performance. Furthermore, the clinical applicability of the model was evaluated through decision curve analysis (DCA).</div></div><div><h3>Results</h3><div>The accuracy, precision, specificity and F1 score of the DT model performed best in the training set (test set), with scores of 0.904 (0.845), 0.875 (0.795), 0.973 (0.875) and 0.973 (0.875). The sensitivity of the training set (test set) of the SVM model performed best among the five models with a score of 0.865 (0.821). The area under the curve of all five models was greater than 0.9 for the training dataset and greater than 0.8 for the test dataset. The DCA of all models showed good clinical application value. The study identified ten indicators that were significant predictors of MCI-SKDS.</div></div><div><h3>Conclusion</h3><div>The risk prediction index derived from machine learning for the MCI-SKDS prediction model is simple and practical; the model demonstrates good predictive value and clinical applicability, and the DT model had the best performance.</div><div>Please cite this article as: Ai YT, Zhou S, Wang M, Zheng TY, Hu H, Wang YC, Li YC, Wang XT, Zhou PJ. Development of a machine learning-based risk prediction model for mild cognitive impairment with spleen-kidney deficiency syndrome in the elderly. <em>J Integr Med</em>. 2025; 23(4): 390–397.</div></div>","PeriodicalId":48599,"journal":{"name":"Journal of Integrative Medicine-Jim","volume":"23 4","pages":"Pages 390-397"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Medicine-Jim","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095496425000858","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
As an age-related neurodegenerative disease, the prevalence of mild cognitive impairment (MCI) increases with age. Within the framework of traditional Chinese medicine, spleen-kidney deficiency syndrome (SKDS) is recognized as the most frequent MCI subtype. Due to the covert and gradual onset of MCI, in community settings it poses a significant challenge for patients and their families to discern between typical aging and pathological changes. There exists an urgent need to devise a preliminary diagnostic tool designed for community-residing older adults with MCI attributed to SKDS (MCI-SKDS).
Methods
This investigation enrolled 312 elderly individuals diagnosed with MCI, who were randomly distributed into training and test datasets at a 3:1 ratio. Five machine learning methods, including logistic regression (LR), decision tree (DT), naive Bayes (NB), support vector machine (SVM), and gradient boosting (GB), were used to build a diagnostic prediction model for MCI-SKDS. Accuracy, sensitivity, specificity, precision, F1 score, and area under the curve were used to evaluate model performance. Furthermore, the clinical applicability of the model was evaluated through decision curve analysis (DCA).
Results
The accuracy, precision, specificity and F1 score of the DT model performed best in the training set (test set), with scores of 0.904 (0.845), 0.875 (0.795), 0.973 (0.875) and 0.973 (0.875). The sensitivity of the training set (test set) of the SVM model performed best among the five models with a score of 0.865 (0.821). The area under the curve of all five models was greater than 0.9 for the training dataset and greater than 0.8 for the test dataset. The DCA of all models showed good clinical application value. The study identified ten indicators that were significant predictors of MCI-SKDS.
Conclusion
The risk prediction index derived from machine learning for the MCI-SKDS prediction model is simple and practical; the model demonstrates good predictive value and clinical applicability, and the DT model had the best performance.
Please cite this article as: Ai YT, Zhou S, Wang M, Zheng TY, Hu H, Wang YC, Li YC, Wang XT, Zhou PJ. Development of a machine learning-based risk prediction model for mild cognitive impairment with spleen-kidney deficiency syndrome in the elderly. J Integr Med. 2025; 23(4): 390–397.
期刊介绍:
The predecessor of JIM is the Journal of Chinese Integrative Medicine (Zhong Xi Yi Jie He Xue Bao). With this new, English-language publication, we are committed to make JIM an international platform for publishing high-quality papers on complementary and alternative medicine (CAM) and an open forum in which the different professions and international scholarly communities can exchange views, share research and their clinical experience, discuss CAM education, and confer about issues and problems in our various disciplines and in CAM as a whole in order to promote integrative medicine.
JIM is indexed/abstracted in: MEDLINE/PubMed, ScienceDirect, Emerging Sources Citation Index (ESCI), Scopus, Embase, Chemical Abstracts (CA), CAB Abstracts, EBSCO, WPRIM, JST China, Chinese Science Citation Database (CSCD), and China National Knowledge Infrastructure (CNKI).
JIM Editorial Office uses ThomsonReuters ScholarOne Manuscripts as submitting and review system (submission link: http://mc03.manuscriptcentral.com/jcim-en).
JIM is published bimonthly. Manuscripts submitted to JIM should be written in English. Article types include but are not limited to randomized controlled and pragmatic trials, translational and patient-centered effectiveness outcome studies, case series and reports, clinical trial protocols, preclinical and basic science studies, systematic reviews and meta-analyses, papers on methodology and CAM history or education, conference proceedings, editorials, commentaries, short communications, book reviews, and letters to the editor.
Our purpose is to publish a prestigious international journal for studies in integrative medicine. To achieve this aim, we seek to publish high-quality papers on any aspects of integrative medicine, such as acupuncture and traditional Chinese medicine, Ayurveda medicine, herbal medicine, homeopathy, nutrition, chiropractic, mind-body medicine, taichi, qigong, meditation, and any other modalities of CAM; our commitment to international scope ensures that research and progress from all regions of the world are widely covered. These ensure that articles published in JIM have the maximum exposure to the international scholarly community.
JIM can help its authors let their papers reach the widest possible range of readers, and let all those who share an interest in their research field be concerned with their study.