{"title":"Metabolomic and evolutionary integration unveils medicinal potential in six Corydalis species.","authors":"Yun Gao, Xiangyu Zhou, Mengxiao Yan, Zhengwei Wang, Xin Zhong, Xiaochen Li, Junjie Zhu, Yu Kong, Wanrong Zhu, Ruolin Geng, Yaping Zhou, Qing Zhao, Yonghong Hu, Ping Xu","doi":"10.1186/s43897-025-00162-2","DOIUrl":null,"url":null,"abstract":"<p><p>The Corydalis genus, one of the largest within the Papaveraceae family, holds a rich diversity of medicinal resources, particularly among its tuberous species. Benzylisoquinoline alkaloids (BIAs) are primarily responsible for the medicinal properties observed in Corydalis plants. In this study, we conducted an integrated evolutionary analysis by combining whole-genome resequencing with comprehensive metabolite profiling across various Corydalis species. Guided by these initial findings, supported by local cultivation practices and an extensive literature review, we further investigated six tuberous Corydalis species: C. yanhusuo, C. decumbens, C. schanginii, C. ledebouriana, C. solida, and the newly identified C. nanchuanensis. Our results revealed conserved alkaloid profiles across these species but highlighted significant variations in key bioactive compounds. Notably, C. nanchuanensis exhibited considerably higher levels of tetrahydropalmatine compared to the commonly used medicinal species C. yanhusuo, while C. solida, originally sourced from the Netherlands, displayed elevated concentrations of corydaline, palmatine, and dehydrocorydaline. Additionally, transcriptome-metabolome correlation analyses pinpointed several critical genes involved in protopine biosynthesis, particularly emphasizing the TNMT gene family. These discoveries significantly enhance our understanding of metabolic diversity in tuberous Corydalis, providing essential insights for the exploration of novel medicinal resources and facilitating targeted genetic improvements for therapeutic use.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"38"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12211431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00162-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Corydalis genus, one of the largest within the Papaveraceae family, holds a rich diversity of medicinal resources, particularly among its tuberous species. Benzylisoquinoline alkaloids (BIAs) are primarily responsible for the medicinal properties observed in Corydalis plants. In this study, we conducted an integrated evolutionary analysis by combining whole-genome resequencing with comprehensive metabolite profiling across various Corydalis species. Guided by these initial findings, supported by local cultivation practices and an extensive literature review, we further investigated six tuberous Corydalis species: C. yanhusuo, C. decumbens, C. schanginii, C. ledebouriana, C. solida, and the newly identified C. nanchuanensis. Our results revealed conserved alkaloid profiles across these species but highlighted significant variations in key bioactive compounds. Notably, C. nanchuanensis exhibited considerably higher levels of tetrahydropalmatine compared to the commonly used medicinal species C. yanhusuo, while C. solida, originally sourced from the Netherlands, displayed elevated concentrations of corydaline, palmatine, and dehydrocorydaline. Additionally, transcriptome-metabolome correlation analyses pinpointed several critical genes involved in protopine biosynthesis, particularly emphasizing the TNMT gene family. These discoveries significantly enhance our understanding of metabolic diversity in tuberous Corydalis, providing essential insights for the exploration of novel medicinal resources and facilitating targeted genetic improvements for therapeutic use.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.