Isolation and identification of a newly discovered broad-spectrum Acinetobacter baumannii phage and therapeutic validation against pan-resistant Acinetobacter baumannii.
{"title":"Isolation and identification of a newly discovered broad-spectrum Acinetobacter baumannii phage and therapeutic validation against pan-resistant Acinetobacter baumannii.","authors":"Miaomiao Lin, Lele Xiong, Wen Li, Lingyan Xiao, Wei Zhang, Xiaogui Zhao, Yishan Zheng","doi":"10.1016/j.virs.2025.06.003","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of Acinetobacter baumannii (A. baumannii) poses significant clinical challenges due to its multidrug/pan-drug resistance. In this study, we isolated a broad-spectrum lytic A. baumannii phage, named P425, from medical wastewater, targeting nine multidrug-resistant A. baumannii (MDRAB) with diverse capsular types. Biological characterization revealed that P425 maintains activity at pH range of 3-12 and temperature range of 4-50 °C. It resists UV irradiation for 20 minutes, and had an optimal multiplicity of infection (MOI) is 0.00001. The adsorption kinetics showed that P425 achieves > 90% within 10 minutes of incubation, and the one-step growth curve indicated a 10-minute latent period, with a burst size of 184 PFU/cell. The genome sequencing results indicated that it harbors a double-stranded DNA genome of 40,583 bp with a GC content of 39.39%. Intergenomic similarity analysis classified it as a novel species within the Friunavirus genus, while electron microscopy results showed that it belongs to the Podoviridae family. Notably, P425 exhibits potent 24-hour in vitro inhibitory activity against MDRAB, and demonstrates synergistic effect at an MOI of 0.001 when combined with five classes of antibiotics targeting distinct antimicrobial mechanisms. Safety evaluations confirmed the absence of cytotoxicity, hemolytic activity, or systemic toxicity both in vitro and in vivo. In mouse infection models, P425 can significantly improve the survival rates of mice infected with Ab25 (ST1791/KL101). When co-administered with levofloxacin, it can achieved 100% protection against mortality and promoted immunological recovery. Collectively, P425 is a prospective lytic phage that could offer novel strategies for combating MDRAB infections.</p>","PeriodicalId":23654,"journal":{"name":"Virologica Sinica","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.virs.2025.06.003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment of Acinetobacter baumannii (A. baumannii) poses significant clinical challenges due to its multidrug/pan-drug resistance. In this study, we isolated a broad-spectrum lytic A. baumannii phage, named P425, from medical wastewater, targeting nine multidrug-resistant A. baumannii (MDRAB) with diverse capsular types. Biological characterization revealed that P425 maintains activity at pH range of 3-12 and temperature range of 4-50 °C. It resists UV irradiation for 20 minutes, and had an optimal multiplicity of infection (MOI) is 0.00001. The adsorption kinetics showed that P425 achieves > 90% within 10 minutes of incubation, and the one-step growth curve indicated a 10-minute latent period, with a burst size of 184 PFU/cell. The genome sequencing results indicated that it harbors a double-stranded DNA genome of 40,583 bp with a GC content of 39.39%. Intergenomic similarity analysis classified it as a novel species within the Friunavirus genus, while electron microscopy results showed that it belongs to the Podoviridae family. Notably, P425 exhibits potent 24-hour in vitro inhibitory activity against MDRAB, and demonstrates synergistic effect at an MOI of 0.001 when combined with five classes of antibiotics targeting distinct antimicrobial mechanisms. Safety evaluations confirmed the absence of cytotoxicity, hemolytic activity, or systemic toxicity both in vitro and in vivo. In mouse infection models, P425 can significantly improve the survival rates of mice infected with Ab25 (ST1791/KL101). When co-administered with levofloxacin, it can achieved 100% protection against mortality and promoted immunological recovery. Collectively, P425 is a prospective lytic phage that could offer novel strategies for combating MDRAB infections.
Virologica SinicaBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
7.70
自引率
1.80%
发文量
3149
期刊介绍:
Virologica Sinica is an international journal which aims at presenting the cutting-edge research on viruses all over the world. The journal publishes peer-reviewed original research articles, reviews, and letters to the editor, to encompass the latest developments in all branches of virology, including research on animal, plant and microbe viruses. The journal welcomes articles on virus discovery and characterization, viral epidemiology, viral pathogenesis, virus-host interaction, vaccine development, antiviral agents and therapies, and virus related bio-techniques. Virologica Sinica, the official journal of Chinese Society for Microbiology, will serve as a platform for the communication and exchange of academic information and ideas in an international context.
Electronic ISSN: 1995-820X; Print ISSN: 1674-0769