D M Miles, C A Kletzing, S A Fuselier, K A Goodrich, J W Bonnell, S Bounds, H Cao, I H Cairns, L J Chen, I W Christopher, K Cleveland, H K Connor, D Crawford, J Dolan, J C Dorelli, R Dvorsky, M G Finley, R H W Friedel, J S Halekas, G B Hospodarsky, A N Jaynes, J Labelle, Y Lin, M Øieroset, S M Petrinec, M L Phillips, B Powers, R Prasad, A Rospos, O Santolik, R J Strangeway, K J Trattner, A Washington
{"title":"The Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) Mission.","authors":"D M Miles, C A Kletzing, S A Fuselier, K A Goodrich, J W Bonnell, S Bounds, H Cao, I H Cairns, L J Chen, I W Christopher, K Cleveland, H K Connor, D Crawford, J Dolan, J C Dorelli, R Dvorsky, M G Finley, R H W Friedel, J S Halekas, G B Hospodarsky, A N Jaynes, J Labelle, Y Lin, M Øieroset, S M Petrinec, M L Phillips, B Powers, R Prasad, A Rospos, O Santolik, R J Strangeway, K J Trattner, A Washington","doi":"10.1007/s11214-025-01184-4","DOIUrl":null,"url":null,"abstract":"<p><p>The overarching science goal of the Tandem Reconnection And Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission is to connect the cusp to the magnetosphere by discovering how spatial or temporal variations in magnetic reconnection drive cusp dynamics. This goal will be achieved with a simple mission design comprising two identical small spacecraft in identical low-Earth orbits in a follow-the-leader configuration. TRACERS will make repeated measurements in the cusp for a twelve-month primary mission using plasma and field instruments. These data will be analyzed using established dual-spacecraft techniques and supported by modeling that ensures science closure on the objectives. The TRACERS team leverages hardware collaborations from the University of Iowa, Southwest Research Institute, University of California Los Angeles, University of California Berkeley, and Millennium Space Systems. The larger science team consists of experts in reconnection, cusp physics, and modeling. TRACERS is dedicated to its proposer, and original Principal Investigator, Professor Craig Kletzing.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"221 5","pages":"61"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-025-01184-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The overarching science goal of the Tandem Reconnection And Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission is to connect the cusp to the magnetosphere by discovering how spatial or temporal variations in magnetic reconnection drive cusp dynamics. This goal will be achieved with a simple mission design comprising two identical small spacecraft in identical low-Earth orbits in a follow-the-leader configuration. TRACERS will make repeated measurements in the cusp for a twelve-month primary mission using plasma and field instruments. These data will be analyzed using established dual-spacecraft techniques and supported by modeling that ensures science closure on the objectives. The TRACERS team leverages hardware collaborations from the University of Iowa, Southwest Research Institute, University of California Los Angeles, University of California Berkeley, and Millennium Space Systems. The larger science team consists of experts in reconnection, cusp physics, and modeling. TRACERS is dedicated to its proposer, and original Principal Investigator, Professor Craig Kletzing.
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.