Scopoletin Attenuates Reserpine-Induced Pain-Depression Dyad in Mice via Modulation of Inflammation, Oxidative Stress, and Monoaminergic Pathways.

IF 3.9 4区 医学 Q2 NEUROSCIENCES
Esam Qnais, Omar Gammoh, Yousra Bsieso, Alaa A A Aljabali, Abdelrahim Alqudah, Zaid Alawneh, Hamzah Hajaj, Badriyah S Alotaibi
{"title":"Scopoletin Attenuates Reserpine-Induced Pain-Depression Dyad in Mice via Modulation of Inflammation, Oxidative Stress, and Monoaminergic Pathways.","authors":"Esam Qnais, Omar Gammoh, Yousra Bsieso, Alaa A A Aljabali, Abdelrahim Alqudah, Zaid Alawneh, Hamzah Hajaj, Badriyah S Alotaibi","doi":"10.1007/s12017-025-08869-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pain and depression frequently are comorbid and have common mechanisms such as monoamine depletion, inflammation, and oxidative stress. Hence, this study aimed to investigate the effects of bioactive coumarin on reserpine induced pain-depression dyad in mice. Mechanical allodynia, depressive-like behavior, and cognitive deficits were induced by reserpine (0.5 mg/kg, subcutaneously, once daily on days 1-3) in male BALB/c mice. Scopoletin (50 mg/kg, p.o.) or gabapentin (10 mg/kg, p.o.) was given twice daily (at 9:00 am and 5:00 pm) for 5 days. For days 1-3, the initial daily dose of scopoletin or gabapentin was given 30 min before reserpine injection, with the second dose at the evening. Control animals, which received vehicle, were given 0.1% CMC. Behavioural tests (Electronic von Frey (eVF) test, Pressure Application Measurement (PAM) test) (Forced Swim Test (FST) and Morris Water Maze (MWM) test) were performed on day 4 and 6, and tissue collection was conducted on day 6 for biochemical analyses (cytokines (TNF-α and IL-1β), neurotransmitters (Serotonin, Norepinephrine, and Glutamate), MAO-A activity, GSH, TBARS). Paw withdrawal thresholds (eVF day 4: F(3,20) = 28.75, p < 0.001; PAM: F(3,20) = 35.17, p < 0.001) were markedly diminished and immobility time in FST (F(3,20) = 29.11, p < 0.001) was notably prolonged by reserpine. Moreover, it impaired the spatial memory (MWM: F(3,20) = 30.56, p < 0.001), and increased the serum TNF-α and IL-1β (F(3,20) = 24.32 and 18.50, respectively; p < 0.01), the brain MAO-A activity (F(3,20) = 16.83, p < 0.01), glutamate and TBARS (F(3,20) = 25.11, p < 0.001; F(3,20) = 19.76, p < 0.01), and decreased the brain serotonin, norepinephrine and GSH (p < 0.01-0.001). Supplementation with scopoletin markedly retarded deficits in behavior (eVF and PAL, p < 0.001; FST, p < 0.001; MWM, p < 0.001) and biochemistry (reduction of UG [TNF-α, IL-1β], MAO-A activity and glutamate level along with restoration of monoamine and antioxidant status, p < 0.05-0.001). Scopoletin is a promising candidate drug for comorbid pain and depression due to its significant counteracting effects on reserpine-induced behavioral and biochemical alterations.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"49"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08869-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pain and depression frequently are comorbid and have common mechanisms such as monoamine depletion, inflammation, and oxidative stress. Hence, this study aimed to investigate the effects of bioactive coumarin on reserpine induced pain-depression dyad in mice. Mechanical allodynia, depressive-like behavior, and cognitive deficits were induced by reserpine (0.5 mg/kg, subcutaneously, once daily on days 1-3) in male BALB/c mice. Scopoletin (50 mg/kg, p.o.) or gabapentin (10 mg/kg, p.o.) was given twice daily (at 9:00 am and 5:00 pm) for 5 days. For days 1-3, the initial daily dose of scopoletin or gabapentin was given 30 min before reserpine injection, with the second dose at the evening. Control animals, which received vehicle, were given 0.1% CMC. Behavioural tests (Electronic von Frey (eVF) test, Pressure Application Measurement (PAM) test) (Forced Swim Test (FST) and Morris Water Maze (MWM) test) were performed on day 4 and 6, and tissue collection was conducted on day 6 for biochemical analyses (cytokines (TNF-α and IL-1β), neurotransmitters (Serotonin, Norepinephrine, and Glutamate), MAO-A activity, GSH, TBARS). Paw withdrawal thresholds (eVF day 4: F(3,20) = 28.75, p < 0.001; PAM: F(3,20) = 35.17, p < 0.001) were markedly diminished and immobility time in FST (F(3,20) = 29.11, p < 0.001) was notably prolonged by reserpine. Moreover, it impaired the spatial memory (MWM: F(3,20) = 30.56, p < 0.001), and increased the serum TNF-α and IL-1β (F(3,20) = 24.32 and 18.50, respectively; p < 0.01), the brain MAO-A activity (F(3,20) = 16.83, p < 0.01), glutamate and TBARS (F(3,20) = 25.11, p < 0.001; F(3,20) = 19.76, p < 0.01), and decreased the brain serotonin, norepinephrine and GSH (p < 0.01-0.001). Supplementation with scopoletin markedly retarded deficits in behavior (eVF and PAL, p < 0.001; FST, p < 0.001; MWM, p < 0.001) and biochemistry (reduction of UG [TNF-α, IL-1β], MAO-A activity and glutamate level along with restoration of monoamine and antioxidant status, p < 0.05-0.001). Scopoletin is a promising candidate drug for comorbid pain and depression due to its significant counteracting effects on reserpine-induced behavioral and biochemical alterations.

东莨菪素通过调节炎症、氧化应激和单胺能途径减轻利血平诱导的小鼠疼痛抑制双相。
疼痛和抑郁通常是合并症,有共同的机制,如单胺消耗、炎症和氧化应激。因此,本研究旨在探讨生物活性香豆素对利血平所致小鼠疼痛抑郁双相的影响。利血平(0.5 mg/kg,皮下注射,每日1次,第1-3天)诱导雄性BALB/c小鼠机械性异常性疼痛、抑郁样行为和认知缺陷。东莨菪碱(50 mg/kg, p.o.)或加巴喷丁(10 mg/kg, p.o.)每天两次(上午9:00和下午5:00),连续5天。第1-3天,东莨菪碱或加巴喷丁的初始每日剂量在利血平注射前30分钟给予,第二次剂量在晚上给予。对照动物接受载药,给予0.1% CMC。第4、6天进行行为测试(电子von Frey (eVF)测试、压力测量(PAM)测试、强迫游泳测试(FST)和Morris水迷宫(MWM)测试),第6天收集组织进行生化分析(细胞因子(TNF-α和IL-1β)、神经递质(血清素、去甲肾上腺素和谷氨酸)、MAO-A活性、GSH、TBARS)。爪断阈值(eVF第4天:F(3,20) = 28.75, p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信