Efficacy of enhanced preoxygenation protocols in mitigating hypoxemia during propofol sedation for gastrointestinal endoscopic procedures: a prospective, randomized, controlled study.
Jun Lu, Wentao Ji, Yu Guo, Shun Yang, Didi Yang, Bo Li, Lulong Bo
{"title":"Efficacy of enhanced preoxygenation protocols in mitigating hypoxemia during propofol sedation for gastrointestinal endoscopic procedures: a prospective, randomized, controlled study.","authors":"Jun Lu, Wentao Ji, Yu Guo, Shun Yang, Didi Yang, Bo Li, Lulong Bo","doi":"10.4103/mgr.MEDGASRES-D-24-00136","DOIUrl":null,"url":null,"abstract":"<p><p>JOURNAL/mgres/04.03/01612956-202603000-00003/figure1/v/2025-06-28T140100Z/r/image-tiff Hypoxemia during propofol sedation for gastrointestinal endoscopic procedures is a significant risk and is often exacerbated by inadequate preoxygenation. Effective preoxygenation strategies are essential for reducing the incidence of hypoxemia, especially in high-risk patients. This study aimed to evaluate the efficacy of an enhanced preoxygenation protocol for mitigating hypoxemia during propofol sedation during gastroscopy. In a prospective, randomized, controlled design, patients undergoing gastroscopy were assigned to either an intervention group (enhanced preoxygenation) or a nonintervention group (standard care). The intervention protocol involved the administration of eight tidal volume breaths over 1 minute at an oxygen flow rate of 10 L/min via a tight-fitting face mask, with clinical supervision by an endoscopy nurse. The primary outcome was the incidence of hypoxemia, defined as a peripheral oxygen saturation level of less than 90% at any point during the gastroscopy procedure. Compared with the nonintervention group, the intervention group had a significantly lower incidence of hypoxemia. This effect was particularly pronounced in high-risk patients, including elderly individuals and those with elevated body mass indices. No significant adverse events were observed during the procedure. These results suggest that enhanced preoxygenation may effectively alleviate the occurrence of hypoxemia during propofol sedation in gastrointestinal endoscopic procedures. Further research is needed to assess the broader applicability of this approach and explore additional strategies for optimizing preoxygenation in endoscopic procedures.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":"16 1","pages":"12-18"},"PeriodicalIF":3.0000,"publicationDate":"2026-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
JOURNAL/mgres/04.03/01612956-202603000-00003/figure1/v/2025-06-28T140100Z/r/image-tiff Hypoxemia during propofol sedation for gastrointestinal endoscopic procedures is a significant risk and is often exacerbated by inadequate preoxygenation. Effective preoxygenation strategies are essential for reducing the incidence of hypoxemia, especially in high-risk patients. This study aimed to evaluate the efficacy of an enhanced preoxygenation protocol for mitigating hypoxemia during propofol sedation during gastroscopy. In a prospective, randomized, controlled design, patients undergoing gastroscopy were assigned to either an intervention group (enhanced preoxygenation) or a nonintervention group (standard care). The intervention protocol involved the administration of eight tidal volume breaths over 1 minute at an oxygen flow rate of 10 L/min via a tight-fitting face mask, with clinical supervision by an endoscopy nurse. The primary outcome was the incidence of hypoxemia, defined as a peripheral oxygen saturation level of less than 90% at any point during the gastroscopy procedure. Compared with the nonintervention group, the intervention group had a significantly lower incidence of hypoxemia. This effect was particularly pronounced in high-risk patients, including elderly individuals and those with elevated body mass indices. No significant adverse events were observed during the procedure. These results suggest that enhanced preoxygenation may effectively alleviate the occurrence of hypoxemia during propofol sedation in gastrointestinal endoscopic procedures. Further research is needed to assess the broader applicability of this approach and explore additional strategies for optimizing preoxygenation in endoscopic procedures.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.