Unleashing the future of cancer immunotherapy: in silico design of a multi-epitope and mRNA vaccine duo targeting EWSR1-ATF1, EWSR1-CREB1, and PRAME to conquer clear cell sarcoma using immunoinformatics approaches.
Allah Rakha Yaseen, Muhammad Suleman, Khalid J Alzahrani, Khalaf F Alsharif, Fuad M Alzahrani
{"title":"Unleashing the future of cancer immunotherapy: in silico design of a multi-epitope and mRNA vaccine duo targeting EWSR1-ATF1, EWSR1-CREB1, and PRAME to conquer clear cell sarcoma using immunoinformatics approaches.","authors":"Allah Rakha Yaseen, Muhammad Suleman, Khalid J Alzahrani, Khalaf F Alsharif, Fuad M Alzahrani","doi":"10.1007/s12032-025-02863-6","DOIUrl":null,"url":null,"abstract":"<p><p>Clear cell sarcoma (CCS) is a rare and aggressive soft tissue malignancy characterized by a high metastatic propensity and recurrence rate, with conventional non-specific treatment modalities often yielding limited efficacy and substantial adverse effects. This study aimed to design novel vaccine candidates: a multi-epitope vaccine (MEV) and an mRNA-based vaccine, both targeting the EWSR1-ATF1 and EWSR1-CREB1 fusion proteins, along with the PRAME antigen, to stimulate robust tumor-specific immune responses. Advanced immunoinformatics approaches were employed to identify highly antigenic B-cell and T-cell epitopes while minimizing potential allergenicity and toxicity, ensuring optimal safety and efficacy. The MEV construct was engineered with GM-CSF as an adjuvant to enhance dendritic cell activation and antigen presentation, with EAAK and AAY linkers incorporated to improve structural integrity and epitope processing. For the mRNA vaccine, the MEV was codon-optimized and incorporated into a stable mRNA construct with a 5' cap, Kozak sequence, and poly(A) tail to enhance the translation efficiency and prolong antigen expression. Structural and molecular dynamics simulations confirmed strong and stable interactions of both vaccine constructs with Toll-Like Receptor-3 (TLR-3), supporting their potential for effective immune activation. Furthermore, population coverage analysis demonstrated a global reach of 99.48%, ensuring broad immunogenicity across diverse genetic backgrounds. In silico immune response simulations predicted a sustained immune activation lasting over 417 days, characterized by robust cytokine secretion, strong memory cell formation, and high antibody titers following a three-dose regimen. These findings suggest that both the multi-epitope and mRNA-based vaccine candidates hold substantial promise as novel and precise immunotherapeutic interventions for CCS, potentially overcoming the limitations of existing treatment approaches and significantly enhancing long-term patient prognosis.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 8","pages":"295"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02863-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clear cell sarcoma (CCS) is a rare and aggressive soft tissue malignancy characterized by a high metastatic propensity and recurrence rate, with conventional non-specific treatment modalities often yielding limited efficacy and substantial adverse effects. This study aimed to design novel vaccine candidates: a multi-epitope vaccine (MEV) and an mRNA-based vaccine, both targeting the EWSR1-ATF1 and EWSR1-CREB1 fusion proteins, along with the PRAME antigen, to stimulate robust tumor-specific immune responses. Advanced immunoinformatics approaches were employed to identify highly antigenic B-cell and T-cell epitopes while minimizing potential allergenicity and toxicity, ensuring optimal safety and efficacy. The MEV construct was engineered with GM-CSF as an adjuvant to enhance dendritic cell activation and antigen presentation, with EAAK and AAY linkers incorporated to improve structural integrity and epitope processing. For the mRNA vaccine, the MEV was codon-optimized and incorporated into a stable mRNA construct with a 5' cap, Kozak sequence, and poly(A) tail to enhance the translation efficiency and prolong antigen expression. Structural and molecular dynamics simulations confirmed strong and stable interactions of both vaccine constructs with Toll-Like Receptor-3 (TLR-3), supporting their potential for effective immune activation. Furthermore, population coverage analysis demonstrated a global reach of 99.48%, ensuring broad immunogenicity across diverse genetic backgrounds. In silico immune response simulations predicted a sustained immune activation lasting over 417 days, characterized by robust cytokine secretion, strong memory cell formation, and high antibody titers following a three-dose regimen. These findings suggest that both the multi-epitope and mRNA-based vaccine candidates hold substantial promise as novel and precise immunotherapeutic interventions for CCS, potentially overcoming the limitations of existing treatment approaches and significantly enhancing long-term patient prognosis.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.