Behnaz Sadat Eftekhari, Behnaz Ashtari, Mozhgan Jahani, Elham Afjeh-Dana, Paul A Janmey, Sara Simorgh, Mazaher Gholipourmalekabadi
{"title":"Silk Fibroin-Based Matrices for the Guidance of Cell Interaction, Tissue Regeneration, and Crosstalk.","authors":"Behnaz Sadat Eftekhari, Behnaz Ashtari, Mozhgan Jahani, Elham Afjeh-Dana, Paul A Janmey, Sara Simorgh, Mazaher Gholipourmalekabadi","doi":"10.1002/mabi.202400629","DOIUrl":null,"url":null,"abstract":"<p><p>The interactions between cells and the extracellular matrix are essential regulators of cell behaviors such as adhesion, proliferation, migration, differentiation, and function. From the perspective of tissue regeneration, some physicochemical characteristics of the material, including hydrophilicity, topology, and charge of the material surface, can significantly affect cell adhesion, proliferation, and differentiation. Many biomaterials are introduced for tissue engineering scaffolds, biomimicking natural tissues. Among the biomaterials, silk proteins (fibroin and sericin) have many excellent characteristics, making them ideal candidates for regenerative medicine. Several studies have tuned silk fibroin characteristics to specify cell adhesion, proliferation, and stem cell differentiation by combining fibroin with other materials, coating, modification, and biofunctionalization. In the current review article, the essential properties of silk fibroin-based scaffolds (presence of cell adhesion motifs, wettability, charge, elasticity) and their influences on cell adhesion, proliferation, and migration, as well as their biodegradation and the body's immune response are discussed. In addition, the crosstalk between silk fibroin and various cells is discussed, as well as different methods for blending or biofunctionalization of silk fibroin with the aim of engineering a silk-based scaffold with a specifically tuned response to biological systems and subsequently affecting the behavior of the cells.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e00629"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400629","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interactions between cells and the extracellular matrix are essential regulators of cell behaviors such as adhesion, proliferation, migration, differentiation, and function. From the perspective of tissue regeneration, some physicochemical characteristics of the material, including hydrophilicity, topology, and charge of the material surface, can significantly affect cell adhesion, proliferation, and differentiation. Many biomaterials are introduced for tissue engineering scaffolds, biomimicking natural tissues. Among the biomaterials, silk proteins (fibroin and sericin) have many excellent characteristics, making them ideal candidates for regenerative medicine. Several studies have tuned silk fibroin characteristics to specify cell adhesion, proliferation, and stem cell differentiation by combining fibroin with other materials, coating, modification, and biofunctionalization. In the current review article, the essential properties of silk fibroin-based scaffolds (presence of cell adhesion motifs, wettability, charge, elasticity) and their influences on cell adhesion, proliferation, and migration, as well as their biodegradation and the body's immune response are discussed. In addition, the crosstalk between silk fibroin and various cells is discussed, as well as different methods for blending or biofunctionalization of silk fibroin with the aim of engineering a silk-based scaffold with a specifically tuned response to biological systems and subsequently affecting the behavior of the cells.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.