Adhesive hydrogels containing berberine and mesoporous silica nanocarriers: a potential therapy for neurovascular dysfunction and cognitive decline in Alzheimer's disease.

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Xiaxuan Zhang, Jian-Song Zhou, Hong-Jun Wu, Yang Guo
{"title":"Adhesive hydrogels containing berberine and mesoporous silica nanocarriers: a potential therapy for neurovascular dysfunction and cognitive decline in Alzheimer's disease.","authors":"Xiaxuan Zhang, Jian-Song Zhou, Hong-Jun Wu, Yang Guo","doi":"10.1080/09205063.2025.2519867","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurological disorder and the predominant form of dementia among the elderly. Berberine (BBR) is an approved drug for Alzheimer's disease (AD) that has demonstrated a substantial improvement in cognitive function, proficient management of neurobehavioral symptoms, and enhancement of performance in vital everyday activities. Nonetheless, the adverse effects of the drug encompass vomiting and nausea, considerable variations in blood concentrations, and inadequate patient adherence. Consequently, the primary objectives are to optimize the administration method and enhance therapeutic efficiency. Hence, we suggest utilizing a hierarchical hydrogel (HGL)-incorporated mesoporous silica nanocarrier (MSN) to incorporate BBR, aiming to reduce adverse effects in the stomach. These hydrogels facilitate the gradual release of drugs at a rate of 62% over a prolonged duration, aiming to decrease dose frequency, optimize the efficacy of drug administrations, and improve patient adherence. Due to these characteristics, drug-encapsulating MSN-BBR hydrogels can facilitate optimal drug administration and have developed into superior options for Alzheimer's disease therapy, with innovation promising effective treatment.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-19"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2519867","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a progressive neurological disorder and the predominant form of dementia among the elderly. Berberine (BBR) is an approved drug for Alzheimer's disease (AD) that has demonstrated a substantial improvement in cognitive function, proficient management of neurobehavioral symptoms, and enhancement of performance in vital everyday activities. Nonetheless, the adverse effects of the drug encompass vomiting and nausea, considerable variations in blood concentrations, and inadequate patient adherence. Consequently, the primary objectives are to optimize the administration method and enhance therapeutic efficiency. Hence, we suggest utilizing a hierarchical hydrogel (HGL)-incorporated mesoporous silica nanocarrier (MSN) to incorporate BBR, aiming to reduce adverse effects in the stomach. These hydrogels facilitate the gradual release of drugs at a rate of 62% over a prolonged duration, aiming to decrease dose frequency, optimize the efficacy of drug administrations, and improve patient adherence. Due to these characteristics, drug-encapsulating MSN-BBR hydrogels can facilitate optimal drug administration and have developed into superior options for Alzheimer's disease therapy, with innovation promising effective treatment.

含有小檗碱和介孔二氧化硅纳米载体的黏附水凝胶:阿尔茨海默病神经血管功能障碍和认知能力下降的潜在疗法。
阿尔茨海默病(AD)是一种进行性神经系统疾病,是老年痴呆症的主要形式。小檗碱(BBR)是一种被批准用于治疗阿尔茨海默病(AD)的药物,已被证明对认知功能有实质性的改善,对神经行为症状有熟练的管理,并在重要的日常活动中提高表现。尽管如此,该药的不良反应包括呕吐和恶心,血液浓度的显著变化,以及患者依从性不足。因此,主要目标是优化给药方法,提高治疗效率。因此,我们建议使用分层水凝胶(HGL)掺入介孔二氧化硅纳米载体(MSN)来掺入BBR,旨在减少胃中的不良反应。这些水凝胶促进药物在较长时间内以62%的速度逐渐释放,旨在减少给药频率,优化给药疗效,提高患者依从性。由于这些特点,药物包封的MSN-BBR水凝胶可以促进最佳给药,并已发展成为阿尔茨海默病治疗的优越选择,创新有望有效治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信