{"title":"Intranasal and Pulmonary Lipid Nanoparticles for Gene Delivery: Turning Challenges into Opportunities.","authors":"Yaman Tayyar, Adi Idris, Hadi Yassine","doi":"10.2147/IJN.S517385","DOIUrl":null,"url":null,"abstract":"<p><p>Delivery of nano-therapeutics through the nasal route offers a promising approach for several applications, including intranasal conditions, pulmonary delivery, brain targeting, and vaccination. Despite its potential, this method faces significant challenges, including overcoming the mucosal barrier, ensuring consistent absorption, controlling the deposition area, and managing immunogenic responses. This review provides a comprehensive overview of the current state of nasally delivered lipid nanoparticles (LNPs) for gene medicine, focusing on the specific barriers encountered in this delivery route and strategies to overcome them. We examine how formulation composition affects stability during aerosolization, analyze the impact of particle characteristics on mucociliary clearance, and evaluate interactions with the lung surfactant layer. The review also compares delivery devices including metered-dose inhalers, dry powder inhalers, and nebulizers, highlighting how device selection influences LNP integrity and deposition patterns. Furthermore, we explore potential safety considerations with intranasal LNPs and propose approaches to mitigate adverse effects. By addressing these challenges with evidence-based strategies, this review aims to advance the development and clinical application of intranasal and pulmonary LNP delivery systems for gene-based therapeutics and vaccines.</p>","PeriodicalId":14084,"journal":{"name":"International Journal of Nanomedicine","volume":"20 ","pages":"8085-8099"},"PeriodicalIF":6.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204099/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJN.S517385","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Delivery of nano-therapeutics through the nasal route offers a promising approach for several applications, including intranasal conditions, pulmonary delivery, brain targeting, and vaccination. Despite its potential, this method faces significant challenges, including overcoming the mucosal barrier, ensuring consistent absorption, controlling the deposition area, and managing immunogenic responses. This review provides a comprehensive overview of the current state of nasally delivered lipid nanoparticles (LNPs) for gene medicine, focusing on the specific barriers encountered in this delivery route and strategies to overcome them. We examine how formulation composition affects stability during aerosolization, analyze the impact of particle characteristics on mucociliary clearance, and evaluate interactions with the lung surfactant layer. The review also compares delivery devices including metered-dose inhalers, dry powder inhalers, and nebulizers, highlighting how device selection influences LNP integrity and deposition patterns. Furthermore, we explore potential safety considerations with intranasal LNPs and propose approaches to mitigate adverse effects. By addressing these challenges with evidence-based strategies, this review aims to advance the development and clinical application of intranasal and pulmonary LNP delivery systems for gene-based therapeutics and vaccines.
期刊介绍:
The International Journal of Nanomedicine is a globally recognized journal that focuses on the applications of nanotechnology in the biomedical field. It is a peer-reviewed and open-access publication that covers diverse aspects of this rapidly evolving research area.
With its strong emphasis on the clinical potential of nanoparticles in disease diagnostics, prevention, and treatment, the journal aims to showcase cutting-edge research and development in the field.
Starting from now, the International Journal of Nanomedicine will not accept meta-analyses for publication.