{"title":"Automated Evaluation of Female Pelvic Organ Descent on Transperineal Ultrasound: Model Development and Validation.","authors":"Shuangyu Wu, Jiawei Wu, Yuteng Xu, Jiantao Tan, Ruixuan Wang, Xinling Zhang","doi":"10.1007/s00192-025-06211-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction and hypothesis: </strong>Transperineal ultrasound (TPUS) is a widely used tool for evaluating female pelvic organ prolapse (POP), but its accurate interpretation relies on experience, causing diagnostic variability. This study aims to develop and validate a multi-task deep learning model to automate POP assessment using TPUS images.</p><p><strong>Methods: </strong>TPUS images from 1340 female patients (January-June 2023) were evaluated by two experienced physicians. The presence and severity of cystocele, uterine prolapse, rectocele, and excessive mobility of perineal body (EMoPB) were documented. After preprocessing, 1072 images were used for training and 268 for validation. The model used ResNet34 as the feature extractor and four parallel fully connected layers to predict the conditions. Model performance was assessed using confusion matrix and area under the curve (AUC). Gradient-weighted class activation mapping (Grad-CAM) visualized the model's focus areas.</p><p><strong>Results: </strong>The model demonstrated strong diagnostic performance, with accuracies and AUC values as follows: cystocele, 0.869 (95% CI, 0.824-0.905) and 0.947 (95% CI, 0.930-0.962); uterine prolapse, 0.799 (95% CI, 0.746-0.842) and 0.931 (95% CI, 0.911-0.948); rectocele, 0.978 (95% CI, 0.952-0.990) and 0.892 (95% CI, 0.849-0.927); and EMoPB, 0.869 (95% CI, 0.824-0.905) and 0.942 (95% CI, 0.907-0.967). Grad-CAM heatmaps revealed that the model's focus areas were consistent with those observed by human experts.</p><p><strong>Conclusions: </strong>This study presents a multi-task deep learning model for automated POP assessment using TPUS images, showing promising efficacy and potential to benefit a broader population of women.</p>","PeriodicalId":14355,"journal":{"name":"International Urogynecology Journal","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Urogynecology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00192-025-06211-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction and hypothesis: Transperineal ultrasound (TPUS) is a widely used tool for evaluating female pelvic organ prolapse (POP), but its accurate interpretation relies on experience, causing diagnostic variability. This study aims to develop and validate a multi-task deep learning model to automate POP assessment using TPUS images.
Methods: TPUS images from 1340 female patients (January-June 2023) were evaluated by two experienced physicians. The presence and severity of cystocele, uterine prolapse, rectocele, and excessive mobility of perineal body (EMoPB) were documented. After preprocessing, 1072 images were used for training and 268 for validation. The model used ResNet34 as the feature extractor and four parallel fully connected layers to predict the conditions. Model performance was assessed using confusion matrix and area under the curve (AUC). Gradient-weighted class activation mapping (Grad-CAM) visualized the model's focus areas.
Results: The model demonstrated strong diagnostic performance, with accuracies and AUC values as follows: cystocele, 0.869 (95% CI, 0.824-0.905) and 0.947 (95% CI, 0.930-0.962); uterine prolapse, 0.799 (95% CI, 0.746-0.842) and 0.931 (95% CI, 0.911-0.948); rectocele, 0.978 (95% CI, 0.952-0.990) and 0.892 (95% CI, 0.849-0.927); and EMoPB, 0.869 (95% CI, 0.824-0.905) and 0.942 (95% CI, 0.907-0.967). Grad-CAM heatmaps revealed that the model's focus areas were consistent with those observed by human experts.
Conclusions: This study presents a multi-task deep learning model for automated POP assessment using TPUS images, showing promising efficacy and potential to benefit a broader population of women.
期刊介绍:
The International Urogynecology Journal is the official journal of the International Urogynecological Association (IUGA).The International Urogynecology Journal has evolved in response to a perceived need amongst the clinicians, scientists, and researchers active in the field of urogynecology and pelvic floor disorders. Gynecologists, urologists, physiotherapists, nurses and basic scientists require regular means of communication within this field of pelvic floor dysfunction to express new ideas and research, and to review clinical practice in the diagnosis and treatment of women with disorders of the pelvic floor. This Journal has adopted the peer review process for all original contributions and will maintain high standards with regard to the research published therein. The clinical approach to urogynecology and pelvic floor disorders will be emphasized with each issue containing clinically relevant material that will be immediately applicable for clinical medicine. This publication covers all aspects of the field in an interdisciplinary fashion