Analysis of argument structure constructions in a deep recurrent language model.

IF 2.1 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2025-06-16 eCollection Date: 2025-01-01 DOI:10.3389/fncom.2025.1474860
Pegah Ramezani, Achim Schilling, Patrick Krauss
{"title":"Analysis of argument structure constructions in a deep recurrent language model.","authors":"Pegah Ramezani, Achim Schilling, Patrick Krauss","doi":"10.3389/fncom.2025.1474860","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how language and linguistic constructions are processed in the brain is a fundamental question in cognitive computational neuroscience. This study builds directly on our previous work analyzing Argument Structure Constructions (ASCs) in the BERT language model, extending the investigation to a simpler, brain-constrained architecture: a recurrent neural language model. Specifically, we explore the representation and processing of four ASCs-transitive, ditransitive, caused-motion, and resultative-in a Long Short-Term Memory (LSTM) network. We trained the LSTM on a custom GPT-4-generated dataset of 2,000 syntactically balanced sentences. We then analyzed the internal hidden layer activations using Multidimensional Scaling (MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize sentence representations. The Generalized Discrimination Value (GDV) was calculated to quantify cluster separation. Our results show distinct clusters for the four ASCs across all hidden layers, with the strongest separation observed in the final layer. These findings are consistent with our earlier study based on a large language model and demonstrate that even relatively simple RNNs can form abstract, construction-level representations. This supports the hypothesis that hierarchical linguistic structure can emerge through prediction-based learning. In future work, we plan to compare these model-derived representations with neuroimaging data from continuous speech perception, further bridging computational and biological perspectives on language processing.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1474860"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1474860","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how language and linguistic constructions are processed in the brain is a fundamental question in cognitive computational neuroscience. This study builds directly on our previous work analyzing Argument Structure Constructions (ASCs) in the BERT language model, extending the investigation to a simpler, brain-constrained architecture: a recurrent neural language model. Specifically, we explore the representation and processing of four ASCs-transitive, ditransitive, caused-motion, and resultative-in a Long Short-Term Memory (LSTM) network. We trained the LSTM on a custom GPT-4-generated dataset of 2,000 syntactically balanced sentences. We then analyzed the internal hidden layer activations using Multidimensional Scaling (MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize sentence representations. The Generalized Discrimination Value (GDV) was calculated to quantify cluster separation. Our results show distinct clusters for the four ASCs across all hidden layers, with the strongest separation observed in the final layer. These findings are consistent with our earlier study based on a large language model and demonstrate that even relatively simple RNNs can form abstract, construction-level representations. This supports the hypothesis that hierarchical linguistic structure can emerge through prediction-based learning. In future work, we plan to compare these model-derived representations with neuroimaging data from continuous speech perception, further bridging computational and biological perspectives on language processing.

深层递归语言模型的论点结构结构分析。
理解语言和语言结构是如何在大脑中处理的是认知计算神经科学的一个基本问题。本研究直接建立在我们之前分析BERT语言模型中的论点结构结构(ASCs)的工作基础上,将研究扩展到一个更简单的、大脑约束的架构:一个循环神经语言模型。具体地说,我们探讨了传递性、非传递性、因动性和结果性四种asc在长短期记忆(LSTM)网络中的表征和加工。我们在一个定制的gpt -4生成的数据集上训练LSTM,该数据集包含2000个语法平衡的句子。然后,我们使用多维尺度(MDS)和t分布随机邻居嵌入(t-SNE)来分析内部隐藏层的激活,以可视化句子表示。计算广义判别值(GDV)来量化聚类分离。我们的研究结果显示,四种ASCs在所有隐藏层中都有不同的簇,在最后一层中观察到最强的分离。这些发现与我们之前基于大型语言模型的研究一致,并证明即使是相对简单的rnn也可以形成抽象的、构造级的表示。这支持了分层语言结构可以通过基于预测的学习出现的假设。在未来的工作中,我们计划将这些模型衍生的表征与来自连续语音感知的神经成像数据进行比较,进一步连接语言处理的计算和生物学视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信