{"title":"Analysis of argument structure constructions in a deep recurrent language model.","authors":"Pegah Ramezani, Achim Schilling, Patrick Krauss","doi":"10.3389/fncom.2025.1474860","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how language and linguistic constructions are processed in the brain is a fundamental question in cognitive computational neuroscience. This study builds directly on our previous work analyzing Argument Structure Constructions (ASCs) in the BERT language model, extending the investigation to a simpler, brain-constrained architecture: a recurrent neural language model. Specifically, we explore the representation and processing of four ASCs-transitive, ditransitive, caused-motion, and resultative-in a Long Short-Term Memory (LSTM) network. We trained the LSTM on a custom GPT-4-generated dataset of 2,000 syntactically balanced sentences. We then analyzed the internal hidden layer activations using Multidimensional Scaling (MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize sentence representations. The Generalized Discrimination Value (GDV) was calculated to quantify cluster separation. Our results show distinct clusters for the four ASCs across all hidden layers, with the strongest separation observed in the final layer. These findings are consistent with our earlier study based on a large language model and demonstrate that even relatively simple RNNs can form abstract, construction-level representations. This supports the hypothesis that hierarchical linguistic structure can emerge through prediction-based learning. In future work, we plan to compare these model-derived representations with neuroimaging data from continuous speech perception, further bridging computational and biological perspectives on language processing.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1474860"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1474860","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how language and linguistic constructions are processed in the brain is a fundamental question in cognitive computational neuroscience. This study builds directly on our previous work analyzing Argument Structure Constructions (ASCs) in the BERT language model, extending the investigation to a simpler, brain-constrained architecture: a recurrent neural language model. Specifically, we explore the representation and processing of four ASCs-transitive, ditransitive, caused-motion, and resultative-in a Long Short-Term Memory (LSTM) network. We trained the LSTM on a custom GPT-4-generated dataset of 2,000 syntactically balanced sentences. We then analyzed the internal hidden layer activations using Multidimensional Scaling (MDS) and t-Distributed Stochastic Neighbor Embedding (t-SNE) to visualize sentence representations. The Generalized Discrimination Value (GDV) was calculated to quantify cluster separation. Our results show distinct clusters for the four ASCs across all hidden layers, with the strongest separation observed in the final layer. These findings are consistent with our earlier study based on a large language model and demonstrate that even relatively simple RNNs can form abstract, construction-level representations. This supports the hypothesis that hierarchical linguistic structure can emerge through prediction-based learning. In future work, we plan to compare these model-derived representations with neuroimaging data from continuous speech perception, further bridging computational and biological perspectives on language processing.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro