Yuhan Wang, Yancun Li, Mengyao Tang, Luhan Zhang, Shu Zhu
{"title":"Uncovering the Efficacy and Mechanism of Zhenwu Decoction for Hypothyroidism Based on Non-Targeted Metabolomics.","authors":"Yuhan Wang, Yancun Li, Mengyao Tang, Luhan Zhang, Shu Zhu","doi":"10.2147/DDDT.S527163","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypothyroidism, a systemic hypometabolic syndrome from deficient thyroid hormone synthesis/utilization, has high prevalence and complex mechanisms. Levothyroxine-based lifelong therapy risks neurocognitive/metabolic complications and iatrogenic pathologies (eg, osteoporosis, hepatocardiac dysfunction). Zhenwu Decoction (ZW), a classical multi-target herbal formulation, shows therapeutic potential but requires mechanistic clarity on thyroid restoration to enable standardized translation.</p><p><strong>Objective: </strong>To investigate ZW's therapeutic mechanisms in hypothyroidism via serum metabolomics and pathway analysis.</p><p><strong>Methods: </strong>Twenty-seven Wistar rats were randomly divided into three groups: control group (n=9), PTU model group (n=9), and Zhenwu Tang group (n=9). The hypothyroidism rat model was induced by administering propylthiouracil (PTU) by gastric gavage for 4 weeks in the PTU model and Zhenwu Tang groups, while the control group received no treatment. Subsequently, the Zhenwu Tang group underwent a 3-week herbal medicine intervention. Multidimensional validation (including phenotypic monitoring, ELISA for FT4/TSH, and HE staining) was performed to confirm the successful establishment of the model and to evaluate the therapeutic efficacy of Zhenwu Tang (ZW). Untargeted UPLC-MS/MS metabolomics was performed to identify differential metabolites (VIP >1, p <0.05), and MetaboAnalyst 5.0 was used to map key pathways.</p><p><strong>Results: </strong>ZW can significantly improve systemic indicators (body weight, anal temperature, feeding behavior) in hypothyroid rats. It remarkably improves the histopathological features of the thyroid gland, approaching the structure of the normal group. In addition, ZW can significantly regulate serum thyroid hormone levels (decrease TSH and increase FT4), approaching normal levels.47 metabolites (eg, L-proline, fumaric acid, estradiol) and 7 pathways (thermogenesis, cholesterol metabolism) were identified. ZW corrected metabolic dysfunction through multi-target regulation.</p><p><strong>Conclusion: </strong>ZW exerts therapeutic effects by modulating glucose-6-phosphate, bile acids, and critical metabolic pathways, thereby advancing our understanding of hypothyroidism pathophysiology and underscoring its potential for clinical translation and therapeutic development.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"5431-5451"},"PeriodicalIF":4.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S527163","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hypothyroidism, a systemic hypometabolic syndrome from deficient thyroid hormone synthesis/utilization, has high prevalence and complex mechanisms. Levothyroxine-based lifelong therapy risks neurocognitive/metabolic complications and iatrogenic pathologies (eg, osteoporosis, hepatocardiac dysfunction). Zhenwu Decoction (ZW), a classical multi-target herbal formulation, shows therapeutic potential but requires mechanistic clarity on thyroid restoration to enable standardized translation.
Objective: To investigate ZW's therapeutic mechanisms in hypothyroidism via serum metabolomics and pathway analysis.
Methods: Twenty-seven Wistar rats were randomly divided into three groups: control group (n=9), PTU model group (n=9), and Zhenwu Tang group (n=9). The hypothyroidism rat model was induced by administering propylthiouracil (PTU) by gastric gavage for 4 weeks in the PTU model and Zhenwu Tang groups, while the control group received no treatment. Subsequently, the Zhenwu Tang group underwent a 3-week herbal medicine intervention. Multidimensional validation (including phenotypic monitoring, ELISA for FT4/TSH, and HE staining) was performed to confirm the successful establishment of the model and to evaluate the therapeutic efficacy of Zhenwu Tang (ZW). Untargeted UPLC-MS/MS metabolomics was performed to identify differential metabolites (VIP >1, p <0.05), and MetaboAnalyst 5.0 was used to map key pathways.
Results: ZW can significantly improve systemic indicators (body weight, anal temperature, feeding behavior) in hypothyroid rats. It remarkably improves the histopathological features of the thyroid gland, approaching the structure of the normal group. In addition, ZW can significantly regulate serum thyroid hormone levels (decrease TSH and increase FT4), approaching normal levels.47 metabolites (eg, L-proline, fumaric acid, estradiol) and 7 pathways (thermogenesis, cholesterol metabolism) were identified. ZW corrected metabolic dysfunction through multi-target regulation.
Conclusion: ZW exerts therapeutic effects by modulating glucose-6-phosphate, bile acids, and critical metabolic pathways, thereby advancing our understanding of hypothyroidism pathophysiology and underscoring its potential for clinical translation and therapeutic development.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.