{"title":"Leading the Way: Molecular Drivers of Single-Cell Migration.","authors":"Dong Li, Hui Tu, Huaqing Cai","doi":"10.1101/cshperspect.a041748","DOIUrl":null,"url":null,"abstract":"<p><p>Cell migration plays a central role in a wide range of physiological, developmental, and disease-related processes. Studies using single-cell models, such as <i>Dictyostelium discoideum</i>, have provided important insights into the molecular principles underlying this process. Migrating cells exhibit a polarized morphology, with actin-rich protrusions at the leading edge driving forward motion and an actomyosin network at the trailing edge enabling retraction. While actin polymerization and direct cytoskeletal regulators are essential, a complex network of signaling molecules also play a critical role in cell migration. Initially viewed as part of the directional sensing machinery in guided migration, this signaling network is now also recognized as an integral component of the motility module itself. Its spontaneous activity coordinates with cytoskeletal reorganization, enabling cell migration even in the absence of external cues. This review highlights key cytoskeletal and signaling molecules involved in leading-edge protrusion formation, with an emphasis on findings from <i>Dictyostelium</i> studies. We also discuss recent advances in understanding how these cytoskeletal and signaling molecules organize into excitable networks to regulate cell motility.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041748","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cell migration plays a central role in a wide range of physiological, developmental, and disease-related processes. Studies using single-cell models, such as Dictyostelium discoideum, have provided important insights into the molecular principles underlying this process. Migrating cells exhibit a polarized morphology, with actin-rich protrusions at the leading edge driving forward motion and an actomyosin network at the trailing edge enabling retraction. While actin polymerization and direct cytoskeletal regulators are essential, a complex network of signaling molecules also play a critical role in cell migration. Initially viewed as part of the directional sensing machinery in guided migration, this signaling network is now also recognized as an integral component of the motility module itself. Its spontaneous activity coordinates with cytoskeletal reorganization, enabling cell migration even in the absence of external cues. This review highlights key cytoskeletal and signaling molecules involved in leading-edge protrusion formation, with an emphasis on findings from Dictyostelium studies. We also discuss recent advances in understanding how these cytoskeletal and signaling molecules organize into excitable networks to regulate cell motility.
期刊介绍:
Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.