0.5ZnO@Cu5.4O nanoparticle for regulates the expression of GSDMB and targeted therapy of tumor.

IF 6 2区 医学 Q1 ONCOLOGY
Hao Zhang, Guoyan Liu
{"title":"0.5ZnO@Cu5.4O nanoparticle for regulates the expression of GSDMB and targeted therapy of tumor.","authors":"Hao Zhang, Guoyan Liu","doi":"10.1186/s12935-025-03874-z","DOIUrl":null,"url":null,"abstract":"<p><p>GSDMB, a key protein in pyroptosis, is closely linked to various diseases. Nanomaterials can target and regulate specific pathways. Herein, we report a simple and efficient one-step method to develop multi-enzyme nanoparticles capable of suppressing GSDMB expression. 0.5ZnO@Cu5.4O can inhibit GSDMB, a capability that neither ZnO nor Cu5.4O possesses. ZnO@Cu5.4O with different ratios also exhibits varying inhibitory effects. The 0.5ZnO@Cu5.4O can be cleared quickly in vivo, ensuring biocompatibility. Additionally, 0.5ZnO@Cu5.4O significantly inhibits tumor progression, offering promising avenues for clinical cancer therapy, and the development of gene-regulating nanoparticles.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"238"},"PeriodicalIF":6.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12206361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03874-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

GSDMB, a key protein in pyroptosis, is closely linked to various diseases. Nanomaterials can target and regulate specific pathways. Herein, we report a simple and efficient one-step method to develop multi-enzyme nanoparticles capable of suppressing GSDMB expression. 0.5ZnO@Cu5.4O can inhibit GSDMB, a capability that neither ZnO nor Cu5.4O possesses. ZnO@Cu5.4O with different ratios also exhibits varying inhibitory effects. The 0.5ZnO@Cu5.4O can be cleared quickly in vivo, ensuring biocompatibility. Additionally, 0.5ZnO@Cu5.4O significantly inhibits tumor progression, offering promising avenues for clinical cancer therapy, and the development of gene-regulating nanoparticles.

Abstract Image

Abstract Image

Abstract Image

0.5ZnO@Cu5.4O纳米颗粒用于调节GSDMB的表达和肿瘤的靶向治疗。
GSDMB是焦亡的关键蛋白,与多种疾病密切相关。纳米材料可以靶向和调节特定的途径。在此,我们报告了一种简单有效的一步方法来开发能够抑制GSDMB表达的多酶纳米颗粒。0.5ZnO@Cu5.4O可以抑制GSDMB,这是ZnO和Cu5.4O都不具备的能力。不同比例的ZnO@Cu5.4O也表现出不同的抑制效果。0.5ZnO@Cu5.4O在体内可快速清除,保证生物相容性。此外,0.5ZnO@Cu5.4O显著抑制肿瘤进展,为临床癌症治疗和基因调控纳米颗粒的开发提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信