S R Matchette, J Schneider, C Drerup, S Winters, A N Radford, J E Herbert-Read
{"title":"Antagonistic effects of predator color morph abundance and saliency on prey anti-predator responses.","authors":"S R Matchette, J Schneider, C Drerup, S Winters, A N Radford, J E Herbert-Read","doi":"10.1093/beheco/araf059","DOIUrl":null,"url":null,"abstract":"<p><p>The color polymorphisms of prey species are often maintained by apostatic selection. In particular, rarer morphs are thought to be at an advantage because attentional constraints result in predators forming search images, which are based on the most abundant prey morph. Predatory species can also be polymorphic and predator morph abundance may be maintained by a similar mechanism, given prey are also likely to form search images to ensure fast and appropriate anti-predatory responses. Alternatively, given that the predator polymorphism may be driven by other ecological factors (eg niche divergence or sexual selection), prey may instead be highly sensitive to the relative visual saliency of different predatory morphs, which in turn could impact predator morph abundance. Here, by combining empirical observations with a field experiment, we assessed how the relative abundance and saliency of different color morphs of the predatory trumpetfish (<i>Aulostomus maculatus</i>) influenced the behavioral responses of a typical prey species, the bicolor damselfish (<i>Stegastes partitus</i>). We found that more abundant predator color morphs were less salient in damselfish vision (relative to the background) than less abundant color morphs. By presenting 3D models of each morph to damselfish, we found that they did not respond differently to more abundant or more salient morphs. Our results suggest that both the relative abundance and saliency of predator morphs could contribute towards the search images used by prey. Specifically, each morph could have relatively equal detectability if their abundance and saliency have antagonistic effects on search-image formation in prey.</p>","PeriodicalId":8840,"journal":{"name":"Behavioral Ecology","volume":"36 4","pages":"araf059"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12202312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/beheco/araf059","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The color polymorphisms of prey species are often maintained by apostatic selection. In particular, rarer morphs are thought to be at an advantage because attentional constraints result in predators forming search images, which are based on the most abundant prey morph. Predatory species can also be polymorphic and predator morph abundance may be maintained by a similar mechanism, given prey are also likely to form search images to ensure fast and appropriate anti-predatory responses. Alternatively, given that the predator polymorphism may be driven by other ecological factors (eg niche divergence or sexual selection), prey may instead be highly sensitive to the relative visual saliency of different predatory morphs, which in turn could impact predator morph abundance. Here, by combining empirical observations with a field experiment, we assessed how the relative abundance and saliency of different color morphs of the predatory trumpetfish (Aulostomus maculatus) influenced the behavioral responses of a typical prey species, the bicolor damselfish (Stegastes partitus). We found that more abundant predator color morphs were less salient in damselfish vision (relative to the background) than less abundant color morphs. By presenting 3D models of each morph to damselfish, we found that they did not respond differently to more abundant or more salient morphs. Our results suggest that both the relative abundance and saliency of predator morphs could contribute towards the search images used by prey. Specifically, each morph could have relatively equal detectability if their abundance and saliency have antagonistic effects on search-image formation in prey.
期刊介绍:
Studies on the whole range of behaving organisms, including plants, invertebrates, vertebrates, and humans, are included.
Behavioral Ecology construes the field in its broadest sense to include 1) the use of ecological and evolutionary processes to explain the occurrence and adaptive significance of behavior patterns; 2) the use of behavioral processes to predict ecological patterns, and 3) empirical, comparative analyses relating behavior to the environment in which it occurs.