The Pictures by Category and Similarity (PiCS) database: A multidimensional scaling database of 1200 images across 20 categories.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Arryn Robbins, Michael C Hout, Ashley Ercolino, Joseph Schmidt, Hayward J Godwin, Justin MacDonald
{"title":"The Pictures by Category and Similarity (PiCS) database: A multidimensional scaling database of 1200 images across 20 categories.","authors":"Arryn Robbins, Michael C Hout, Ashley Ercolino, Joseph Schmidt, Hayward J Godwin, Justin MacDonald","doi":"10.3758/s13428-025-02732-0","DOIUrl":null,"url":null,"abstract":"<p><p>Visual similarity is an essential concept in vision science, and the methods used to quantify similarity have recently expanded in the areas of human-derived ratings and computer vision methodologies. Researchers who want to manipulate similarity between images (e.g., in a visual search, categorization, or memory task) often use the aforementioned methods, which require substantial, additional data collection prior to the primary task of interest. To alleviate this problem, we have developed an openly available database that uses multidimensional scaling (MDS) to model the similarity among 1200 items spread across 20 object categories, thereby allowing researchers to utilize similarity ratings within and between categories. In this article, we document the development of this database, including (1) collecting similarity ratings using the spatial arrangement method across two sites, (2) our computational approach with MDS, and (3) validation of the MDS space by comparing SpAM-derived distances to direct similarity ratings. The database and similarity data provided between items (and across categories) will be useful to researchers wanting to manipulate or control similarity in their studies.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 8","pages":"212"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02732-0","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Visual similarity is an essential concept in vision science, and the methods used to quantify similarity have recently expanded in the areas of human-derived ratings and computer vision methodologies. Researchers who want to manipulate similarity between images (e.g., in a visual search, categorization, or memory task) often use the aforementioned methods, which require substantial, additional data collection prior to the primary task of interest. To alleviate this problem, we have developed an openly available database that uses multidimensional scaling (MDS) to model the similarity among 1200 items spread across 20 object categories, thereby allowing researchers to utilize similarity ratings within and between categories. In this article, we document the development of this database, including (1) collecting similarity ratings using the spatial arrangement method across two sites, (2) our computational approach with MDS, and (3) validation of the MDS space by comparing SpAM-derived distances to direct similarity ratings. The database and similarity data provided between items (and across categories) will be useful to researchers wanting to manipulate or control similarity in their studies.

图片按类别和相似性(PiCS)数据库:一个多维缩放数据库,包含20个类别的1200张图像。
视觉相似性是视觉科学中的一个重要概念,用于量化相似性的方法最近在人类衍生评级和计算机视觉方法领域得到了扩展。研究人员想要操纵图像之间的相似性(例如,在视觉搜索,分类或记忆任务中)通常使用上述方法,这需要在感兴趣的主要任务之前收集大量额外的数据。为了缓解这个问题,我们开发了一个公开可用的数据库,该数据库使用多维缩放(MDS)来模拟分布在20个对象类别中的1200个项目之间的相似性,从而允许研究人员利用类别内部和类别之间的相似性评级。在本文中,我们记录了该数据库的开发,包括(1)使用两个站点的空间排列方法收集相似性评级,(2)我们的MDS计算方法,以及(3)通过比较垃圾邮件派生的距离和直接相似性评级来验证MDS空间。数据库和项目之间(和跨类别)提供的相似性数据将是有用的研究人员想要操纵或控制相似性在他们的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信